
Agile Business Process Management

Concepts and Tools for Long-running Autonomous Business Processes

Dissertation zur Erlangung des Doktorgrades
an der Fakultät für Mathematik, Informatik und Naturwissenschaften

Fachbereich Informatik
der Universität Hamburg
vorgelegt von Kai Jander

Hamburg, 2016

[?]

Tag der Disputation: 29.04.2016

Die folgenden Gutachter haben diese Dissertation zur Annahme empfohlen:
Prof. Dr. Winfried Lamersdorf, Universität Hamburg

Prof. Dr. Tilo Böhmann, Universität Hamburg
Prof. Dr. Ingo J. Timm, Universität Trier

© 2016 Kai Jander
Verbatim copying and distribution of this entire work is permitted worldwide, without
royalty, in any medium, provided this notice is preserved.

Abstract

Business Process Management is a widespread approach for structuring actions
and labor within organizations and covers a multitude of social, organizational and
technological aspects with the goal of improving efficiency and manageability of
organizations. Concepts for production and administrative business process is highly
developed and such business processes tend to be well-supported with tools and
systems provided by the market. Such processes are often highly structured with a
fairly limited number of variations in their execution and are executed many times,
often in parallel, in order to manufacture a product or provide a service. The lifetime
of such process instances is often very limited.

This type of highly structured mode of operation with high rigidity is very dif-
ferent from another set of business processes that are increasingly common within
many organizations: These processes are collaborative business processes, where a
group of participants engage in a creative process such as product development. Col-
laborative processes are characterized by very long execution times in the scale of
years, a high degree of expected variation due to changes becoming necessary during
execution and workflow participants requiring a high degree of autonomy to perform
their creative tasks and applying their expert knowledge. This kind of process is
difficult to model using traditional business process management toolsets aimed at
production processes and is therefore often organized in an informal fashion.

For these types of processes, flexibility, the ability to react to changes, and agility,
the preparedness for future changes, becomes important issues. This work introduces
an agile approach for business process management based on goal-oriented business
process models and distributed workflow management which aims to provide better
support for this type of business processes by focusing on their self-organizing and
collaborative properties. The approach addresses both conceptual and technical
aspects by directly using business goals as model elements in business process models.
This goal-oriented modeling allows for a high degree of execution flexibility, agility
and, for the workflow participants, autonomy while maintaining a strong link to
the strategic business goals of processes. The distributed workflow management not
only enables technical execution of such processes but also allows for high flexibility
and agility in terms of organizational structures and structural changes before and
during execution. The distributed workflow management also enables the purposeful
addition of system redundancy for a high level of robustness over the long execution
time of the processes.

Kurzzusammenfassung

Geschäftsprozessmanagement ist ein verbreiteter Ansatz um Tätigkeiten und Ar-
beit innerhalb von Organisationen zu strukturieren und umfasst eine Vielzahl an
sozialen, organisatorischen und technologischen Aspekten mit dem Ziel, die Effizienz
und Handhabbarkeit von Organisationen zu verbessern. Konzepte bezüglich Pro-
duktionsprozessen und administrativen Prozessen ist sehr ausgereift und daher wer-
den diese Art von Geschäftsprozessen im Allgemeinen durch am Markt erhältliche
Werkzeuge und Systeme gut unterstützt. Dieser Art der Prozesse sind meistens stark
strukturiert mit einer begrenzten Anzahl von Ausführungsvarianten und werden viele
Male, oftmals auch parallel, ausgeführt um ein Produkt herzustellen oder eine Di-
enstleistung bereitzustellen. Die Lebensdauer solcher Prozessinstanzen ist in vielen
Fällen sehr kurz.

Dieser Typ von stark strukturiertem und sehr rigiden Geschäftsprozess
unterscheidet sich sehr stark von einer anderen Menge an Geschäftsprozessen,
welche in zunehmenden Maße in vielen Organisationen zu finden ist: Diese Prozesse
sind kollaborative Geschäftsprozesse, in welchen die Teilnehmer sich in einem
kreativen Prozess wie etwa der Produktentwicklung betätigen. Kollaborative
Geschäftsprozesse sind geprägt durch sehr lange Ausführungszeiten welche Jahre
umfassen kann, ein hohes Maß an erwarteten Varianten durch Änderungen welche
während der Ausführungszeit notwendig werden und Prozessteilnehmer, welche
einen hohen Grad an Autonomie zur Durchführung ihrer kreativen Tätigkeiten
und Anwendung ihres Expertenwissens benötigen. Diese Art von Prozess ist mit
herkömmlichen Werkzeugen des Geschäftsprozessmanagements, welche vor allem
die Produktionsprozesse im Fokus haben, nur schwer zu modellieren und werden
daher häufig informell organisiert.

Für diese Art von Prozessen werden Flexibilität, die Fähigkeit zur Anpassung an
Änderungen, sowie Agilität, die Vorbereitung auf zukünftige Änderungen, zu wichti-
gen Belangen. Diese Arbeit führt einen agilen Ansatz für das Geschäftsprozessman-
agement basierend auf zielorienterter Geschäftsprozessmodellierung und verteiltem
Workflow-Management ein, welcher zum Ziel hat, die Unterstützung für diese Art
von Geschäftsprozessen durch Fokussierung auf ihre selbstorganisierenden und kol-
laborativen Eigenschaften zu verbessern. Der Ansatz umfasst sowohl konzeptuelle
als auch technische Aspekte durch die direkte Verwendung von Geschäftszielen als
Modellelemente in Geschäftsprozessmodellen. Dieses zieloriente Modellieren erlaubt
einen hohen Grad an Flexibilität, Agilität und, für die Geschäftsprozessteilnehmer,
Autonomie unter Beibehaltung einer starken Bindung an die strategischen Geschäft-
sziele von Prozessen. Das verteilte Workflow-Management ermöglicht nicht nur die
technische Ausführung solcher Prozesse, sondern erlaubt ein hohes Maß an Flexi-
bilität und Agilität in Bezug auf organisatorische Strukturen und strukturelle Än-
derungen sowohl vor als auch während der Ausführung. Das verteilte Workflow-
Management ermöglicht ebenfalls das gezielte Hinzufügen von Systemredundanz für
eine hohes Niveau an Robustheit während der langen Ausführungszeit der Prozesse.

Acknowledgements

This work is the results of cross-disciplinary research that was only possible in the
conducive research environment created, against all external and internal odds, by
a large number of people involved in it, for many of whom I will not be able to
personally express my gratitude here.

Nevertheless, I would like to express my explicit and deep gratitude for a number
of key individuals that made this research and journey possible.

First, I would like to honor and acknowledge my colleagues Dr. Lars Braubach
and Dr. Alexander Pokahr for the fantastic research collaboration and highly pro-
ductive work and exchange, which was enabled and furthered by the freedom and
support granted by my advisor Prof. Winfried Lamersdorf.

In addition, I would also express my gratitude towards my colleagues at Daimler
AG for letting me have a peek into the structure and organization of a large cor-
poration as well as the collaborative work we were able to conduct, in particular,
my gratitude goes towards Birgit Burmeister for her initial work and her unrelenting
support for this project as well as Birgit Leißler for the hands-on experience of a
real-world collaborative process.

Finally, on a personal level, my sincere gratitude belongs to Meg Phillips for
supporting me personally, enduring frustrations and joyfully sharing the progress of
this project over the years.

Contents

1 Introduction 1
1.1 Traditional Focus of Business Process Management and Agile Business

Process Management . 1
1.2 Research Questions and Goals regarding Long-running Autonomous

Processes . 6

2 Business Process Management 19
2.1 Organizational Aspects of Business Process Management 21

2.1.1 Functional Organizations . 22
2.1.2 Process-oriented Organizations 25

2.2 Types of Business Processes . 27
2.3 Organizational Challenges . 28
2.4 Introducing Business Processes Management in Organizations 32
2.5 Business Process Management Systems 35
2.6 Business Processes and Workflows 36
2.7 Business Process Management and Workflow Management 40
2.8 Service-oriented Architecture (SOA) 45

3 Business Process Modeling Languages 49
3.1 Task-based Business Process and Workflow Modeling Languages . . . 51
3.2 Flowcharts . 52
3.3 Workflow Languages based on Petri-nets 53
3.4 Yet Another Workflow Language (YAWL) 55
3.5 Business Process Execution Language (BPEL) 58
3.6 Event-driven Process Chains (EPC) 59
3.7 Business Process Model and Notation (BPMN) 60

3.7.1 Events . 61
3.7.2 Activities . 63
3.7.3 Sequence Flows . 66
3.7.4 Gateways . 66
3.7.5 Message Flows . 68
3.7.6 Pools and Lanes . 68
3.7.7 Text Annotations . 69
3.7.8 Associations . 70

Contents

3.7.9 Additional BPMN Elements 70
3.7.9.1 Data Objects . 71
3.7.9.2 Messages . 71

3.8 Limitations of Task-based Business Process and Workflow Modeling
Languages . 72

3.9 Rule-based Workflow Modeling . 76
3.10 Workflow Instance Agility with Adept2 79
3.11 Case Management Model and Notation (CMMN) 81

4 Goal-oriented Business Process Modeling and GPMN 83
4.1 Goal-oriented BPMN (GO-BPMN) 84
4.2 Goal-oriented Process Modeling Notation (GPMN) 86

4.2.1 GPMN Process Context . 87
4.2.2 Graphical GPMN Elements 88
4.2.3 Conditions and Goal Kinds 91
4.2.4 Plans and Plan Configuration 97

4.3 GPMN Meta-Model . 100

5 Detailed GPMN Semantics and Model Format 103
5.1 Goal and Plan Execution in GPMN 103
5.2 GPMN Intermediate Format . 104
5.3 Modeling with GPMN . 113
5.4 Comparison of GO-BPMN and GPMN 116

5.4.1 Goal Instantiation . 117
5.4.2 Allowing Goal Subtrees as Plan Alternatives 118
5.4.3 Goal Deliberation with Suppression Edges 119
5.4.4 Continuous Goal Deliberation and Means-End Reasoning . . 121
5.4.5 Additional Goal Kinds . 121

5.5 Implementation of a GPMN-based Editor Toolset 124

6 GPMN Workflow Execution 133
6.1 Workflow Engines . 133
6.2 Agent Technology . 136

6.2.1 Definition of Agents . 136
6.2.2 Agents in Software Development 139
6.2.3 Agent Architectures and BDI Agents 140

6.3 Jadex BDI Agents . 142
6.4 GPMN Model Conversion to BDI Agents 144
6.5 Implementation Aspects of GPMN Workflow Execution 147

7 Requirements for a Distributed Workflow Management System 151
7.1 Execution Platform and Service-oriented Middleware 151
7.2 Workflow Management Systems . 152

Contents

7.3 Requirements of a Workflow Management System for Long-running
Autonomous Processes . 154

7.4 Workflow Enactment Service . 157
7.5 Jadex Active Components . 158
7.6 Jadex Platform Enhancements . 161

7.6.1 Compact and Efficient Messaging Format 162
7.6.2 Distributed Storage Service 171

8 Distributed Workflow Management System Architecture and Im-
plementation 177
8.1 Architecture of the Jadex Workflow Management System 177
8.2 Jadex Workflow Management System Implementation 181

8.2.1 Execution Component . 182
8.2.2 Work Item Management Component 183
8.2.3 Authentication Component 185

8.3 Access Control and Security . 188
8.4 Workflow Monitoring . 192

9 Workflow Model Analysis and Validation using Simulation 199
9.1 Validation Approach and Client-side Model 202
9.2 Scenarios . 204
9.3 Example Use Case . 206
9.4 Summary of the Simulation-based Testing Approach 210

10 Application Scenario and Conclusion 213
10.1 Application and Deployment Scenario 216

10.1.1 Introduction to Production Preparation 216
10.1.2 Goal-oriented Implementation of Production Preparation in

GPMN . 219
10.1.3 Workflow Management System Deployment 223

10.2 Conclusion and Future Work . 227

Contents

Chapter 1

Introduction

Due to its practical benefits, business process management (BPM) is a topic of in-
tense research interest, consisting of a combination of methods, best practices and
technology which aim to improve organizational performance. BPM touches a wide
area of research, applications and multiple diverse communities, especially business
administration and computer science (see [161]). It includes topics as diverse as
supply chain management, organizational structures and production automation.
Nevertheless, a core element focuses on the assessment of processes used by an orga-
nization and using information technology to partially automate processes, monitor
their parameters during execution, then use monitoring data to correct and improve
the processes.

Businesses increasingly rely on the use of such fully-automated and
semi-automated processes (workflows), which increasingly assist with control and
management of various aspects of the business itself. As a result, workflows and
business process management are a key factor for the success of an organization
and have resulted in a large landscape of various systems for modelling, simulating,
executing and monitoring workflows.

However, in many cases, business process management has focused on a particular
set of business processes in organizations which are both highly repeatable and where
each business process instance has a short lifespan before it is finished. Despite this,
many business processes in organizations such as research and development do not
fall into this mold. These type of processes are typically very long running and
require a certain flexibility due to unexpected and unforeseeable issues occurring.
The next section will give an overview of this problem, followed by an introduction
of the types of business processes which this work aims to address along with the
concepts needed to approach them.

1.1 Traditional Focus of Business Process Management
and Agile Business Process Management

Business process management, while aiming to address all types of business processes
in an organization, often focuses on a specific set of business processes for which an

1

2 Chapter 1. Introduction

abundance of literature, methodologies and software is available to support them.
In order to understand this set of business processes, Weske offers a few degrees for
business process to help catogerize them (see [161]):

• Degree of Repetition: The degree of repetition describes the number of times
a process is repeated within an organization. The process to produce typical
mass products such as office material, toys and vehicles tends to have a very
high degree of repetition since the explicit goal of mass production is to cut
cost by establishing a production process to be used repeatedly to reduce cost.
Business processes with a high degree of repetition are generally allowed to have
a very large budget for designing the business process since expenses incurred
during the development of the business process are shared by each repetition
of the process. On the other end of the scale are, for example, development
processes, such as a product design process or even the process for designing a
production process itself. These types of processes can typically be used only
once in an unchanged form. While development cycles are often repeated, the
lessons learned from a previous cycle are usually integrated into the next cycle,
requiring changes in the process. In addition, while the focus of production
processes is the timely application of resources, the focus of processes with a low
degree of repetition is often to facilitate collaboration between the participants.
As a result, these types of processes are often also called collaborative business
processes. Since these kinds of business processes can generally only used once
before they need to be adapted, changed or redeveloped, the development cost
of such processes must be fairly low because such development costs must be
borne by the budget of a single cycle of the business process.

• Degree of Structuring : A business process model has a high degree of struc-
turing if it describes all activities and execution constraints with a high degree
of detail. Few decisions have to be done by the participants of the business
process, instead, the business process model contains sufficient detail and con-
straints to provide a framework that points to an unambiguous business de-
cision based on the information available. For example, in a business process
dealing with granting credit, the business process alone includes sufficient infor-
mation and rules to make a decision about the credit grant. In this case, while
humans can process the rules of the business process, the result is unambigu-
ous and requires no independent judgement by the participant. Structuring is
a key element of business process management since it reduces the chances of
introducing human error and arbitrary decision making. If the business process
is firmly rooted in the business goals, the resulting decisions will further those
goals and not impede them. Nevertheless, not every process can be structured
to such a degree, in many cases an organization is required to rely on the good
judgement or training of its employees to reach its goals. This is especially
true for creative processes, where a rigid structure would impede the goal of
the process.

1.1. Traditional Focus of Business Process Management and
Agile Business Process Management 3

In addition, Leymann and Roller provide another degree in which helps to categorize
business processes (see [100]):

• Business Value: Business value represents the importance of a business process
to an organization. A business process with a high business value is critical for
the purpose of the organization and in case of business, may even be critical for
its continuing existence. Business processes with a high business value are part
of the core of an organization and directly contribute to the value the organiza-
tion adds to its customers. For example, the business process for granting loans
has a high business value for a bank because it is core to the business purpose
for a bank. Business processes with a low business value do not contribute
directly to the organization but enable the organization to perform business
processes that do. For example, administrative business processes such as pur-
chase approvals are of low business value to the aforementioned bank. This
concept of business value is closely related but not quite identical to the dis-
tinction between primary and secondary business processes, where business
processes are categorized as core competency and ancillary business processes
(see also section 2).

Figure 1.1: Categories of business processes based on their business value and degree
of repetition (from [100])

These concepts led Leymann and Roller to categorize business processes along
the dimensions of business value and repetition and structuring (see Fig. 1.1). They
describe four groups of business processes (Leymann and Roller primarily focus on
workflows, but the categories also apply to business processes, see section 2.6 for
discussion about the distinction between the two concepts.) on different parts of two
scales:

4 Chapter 1. Introduction

• Ad-hoc Business Processes are considered to have both low repetition and low
business value. They are often organized only as needed (hence their name)
and typically involve bureaucratic tasks such as reviews and approvals. They
generally lack a fixed structure and every performance of such business pro-
cesses can differ from the last. They are usually set up when required, at
which time resources and time schedules are requested and provided when a
business process instance is about to be performed. A typical example of such
an informal process is the so-called for-your-information (FYI) routing. In this
process, information is passed to participants of the process who then decide
autonomously whether and to whom the information should be passed along, if
at all. The process is not planned in advance and executed multiple times, the
process itself provides no decisions or guidelines to the participants whether
to pass the information along and the business value is low since they do not
directly add to the core of the organization.

• Administrative Business Processes usually involve typical bureaucratic stan-
dard tasks which organizations are obliged to fulfill. One of the examples
given by Leymann and Roller is purchase approvals. While the purchase itself
may be related to the core of the business, for example, by being part of the
supply chain process of the production side of the business, the approval of
the purchase order does not directly contribute to the core of the business.
As a result, administrative business process have a correspondingly low busi-
ness value. This does not mean they are unnecessary, merely that they do not
directly advance the core business but are ancillary to it. However, adminis-
trative business processes such as purchase approvals are highly repetitive: In
general, purchases occur continuously in a business and the approval process
does not change (in the case of purchase approvals, this is also functionally
desirable to ensure consistent decision-making). As a result, their degree of
repetition is very high.

• Production Business Processes have both high degrees of business value and
repetition. As the name implies, they are often the business processes govern-
ing the external output of a business. In a traditional manufacturing business,
this would be the manufacturing of products, but in a more service-oriented
business it can involve tasks such as claims and loan handling. Production
business processes are near the core competency of organizations, resulting in
high business value for the organization and directly contribute to the purpose
of the organization. Production of electronic products for an electronic manu-
facturer and the printing of books for a printing business are typical production
business processes.

• Collaborative Business Processes often revolve around long-term planning and
strategies regarding the future of an organization. For example, a mobile phone
manufacturer must design and evaluate upcoming mobile phone models in or-
der to present them to the market in a timely manner. Failing to offer a

1.1. Traditional Focus of Business Process Management and
Agile Business Process Management 5

upgraded products would eventually mean that a business is eclipsed by com-
petitors and even the most efficient production business processes could not
make up for the loss of competitiveness. This means they have a very high
business value and are key for an organization to maintain its core competen-
cies. As the name suggests, these types of processes are often long-term, with
execution time ranging in terms of months to years instead of hours to days
in case of production business processes. Collaborative business processes also
often involve human participants who are required to interact and contribute
towards a common goal. While production business processes can and often
are automated through the use of machines, collaborative business processes
rely on the creative potential of participants involved in the process. Since rigid
frameworks tend to stifle creative progress, collaborative business processes are
often very loosely organized, similar to ad-hoc business processes, giving each
participant a considerable amount of autonomy. In addition, the process is
often only performed once in the same fashion experiences from the last iter-
ation being used in the next one to restructure and improve the process. As
a result, collaborative business processes are considered to be low in terms of
repetitiveness and structuring.

Leymann and Roller in [100] point out that businesses generally focus on the pro-
duction business processes and workflows since the potential gains appear to be the
greatest. The reasons for this can be ascertained when looking at the details of
this particular category of business processes: A high business value means that
the processes directly contributes to core competencies and therefore also further
the competitiveness of the business while the high degree of repetition means that
any gain as a result of engineering investment in design and optimization of such
business processes are multiplied by the high number of repetitions. As a result, ex-
isting approaches to business process management — including modeling, execution,
monitoring and analysis — focus on these types of processes.

In addition, the category of administrative business processes can be addressed by
the same sort of models: While their business value is lower than production business
processes, the repetitive structure means that similar approaches to modeling and
execution can be effective and thus the tools made for production business processes
can be repurposed to support administrative business processes as well.

However, as a result of this, the categories of ad-hoc and collaborative business
processes received comparably little attention (see Fig. 1.2) from traditional busi-
ness process management tools and methodologies. In case of ad-hoc processes, the
potential gain of business process management is indeed comparably low as they are
often very simple.

For example, the ad-hoc business process of FYI-routing consists merely of send-
ing a message containing information that needs to be conveyed to interested people,
while leaving it up to the receiver to pass the message on to any additional parties
they may deem interested in the information. This sort of process is both informal
and of low business value and would therefore gain very little from the introduction

6 Chapter 1. Introduction

Figure 1.2: Traditional Business Process Management tends to focus on business
processes with a high degree of repetition and structuring (center image from [100])

of business process management.
On the other hand, collaborative business processes are a more interesting case:

Collaborative business processes cover issues such as research and development which
are key for the future success of organizations. They therefore represent an area of
potentially large gain from the introduction of business process management but have
traditionally been neglected due to their unusual structure and properties which make
models used for production business processes a poor match for their requirements.
The next section will focus on this category of business processes and attempt to
distill some properties of common examples in this category in order to evaluate the
requirements necessary when attempting to introduce business process management
in this category of business processes. The resulting properties will then spell out
the particular challenges and research questions that need to be addressed for a
different approach to business process management supporting these types of business
processes.

1.2 Research Questions and Goals regarding
Long-running Autonomous Processes

Collaborative business processes are often different from the business processes that
are targeted by traditional business process management such as production busi-
ness processes. Production business processes and administrative processes are often
highly structured, with one or more clear paths of actions taken by its participants
to accomplish the process. A production process such as the printing of a book
is over quickly, ranging from seconds in a fully automated business process for the
manufacture of a simple product to a few hours for more complex products which
require human involvement as in the case of the production of a vehicle.

In contrast to this, collaborative business processes often have a different set of

1.2. Research Questions and Goals regarding Long-running
Autonomous Processes 7

properties. This category of business processes includes processes which involve the
research and development of new products, long-term planning and strategic pro-
cesses like brand management. As a result, many collaborative business processes
feature a number of properties that make them hard to tackle with traditional busi-
ness process management (cf. Fig. 1.2):

• The execution lifecycle of collaborative business processes are often very long.
The development of new products can take months even for the most simple
products and can stretch into years for more complex ones.

• They often involve a diverse set of participants coming from multiple depart-
ments and potentially external suppliers who need to interact and contribute to
the process to be successful. The development process for a complex product
can involve experts not only from production engineering but also accounting,
supply chain management, human resources and marketing in order to ensure
not only a good product that the customer desires but also a marketable and
producible product.

• The participants of such processes are often highly independent. They are
experts in their respective fields and a large part of the process relies on the
participants using their expert knowledge to reach their decisions. The business
process itself can only facilitate the exchange of information between partici-
pants but cannot supply any decision.

• In addition, despite attempts to standardize equipment and Information Tech-
nology (IT) systems in large organizations, the experts involved in collaborative
business processes often use unique and specialized software tools and their IT
systems may have a certain degree of independence not only to install addi-
tional software but also to acquire and deploy hardware systems as needed.
This is often done without the involvement of the IT department that nor-
mally organizes the IT system in the operational side of businesses in order to
reduce administrative overhead and enable the participants to quickly set up
experimental systems.

• Due to their longevity in terms of execution, collaborative business processes
instances can outlast the organizational structure a business had when the
process instance was enacted.

• Furthermore, the business circumstances may change during the execution of
a collaborative business process, potentially invalidating assumptions about
what actions must be performed to successfully finish a process instance.

• Collaborative business processes are deeply connected to the strategic planning
of companies. They are key to the future success of the business and are the
means by which businesses hope to achieve their long-term business goals such
as gaining market share or entering a new market niche. It is therefore very
important for businesses that such processes have a high degree of alignment

8 Chapter 1. Introduction

with the business goals set by the strategic planning level (see also [100] and
[64]).

These properties point towards two distinct aspects of these type of properties which
make them hard to address using traditional business process management method-
ologies and tools:

• The processes are long-running, meaning they have execution life-cycles in
terms of months and years instead of hours.

• The participants and the processes themselves have a high degree of indepen-
dence or autonomy compared to the more controlled environments of produc-
tion and administrative business processes.

Process participants are actors that participate in the process, such as human actors
but also machine actors, that perform tasks contributing to the process goals. While
the notion of a long-running business process is clear, being defined as a process
with an execution time of multiple months or years, the notion of autonomy is more
obscure. For example, the Merriam-Webster Online Dictionary defines autonomy,
among other definitions, as ”a self-governing state” and as ”self-directing freedom”
(see [40]). This definition implies a certain independence from external influences for
the autonomous actor.

The agent technology community offers more technical definitions of autonomy
as a feature for software agents which also indicates this sort of independence by
emphasizing the self-control aspects. For example, Castelfranchi as well as Jennings
and Wooldridge advance the following definition of autonomy (see [32] and [164]):

autonomy: agents operate without the direct intervention of humans or
others, and have some kind of control over their actions and internal state
[32]

In terms of the processes, it makes sense to consider an executing process to react
to situations without human intervention. It is also natural that they can perform
actions like sending e-mails or performing database operations. It is also easy to
imagine that a business process has an internal state, in fact, this tends to be the
norm since the process, at the very least, needs to keep track of its own progress.

However, with regard human participants of a business process, some aspects of
this definition are not very helpful: An autonomous human participant is already a
human and as a result the ”direct intervention of humans” can only be interpreted
as other humans directly interfering (e.g. through direct orders) in the behavior of
the participant.

Aside from this notion, the rest of the definition clarifies how autonomous business
process participants should be considered: They are expected to have at least some
control over their actions and use their knowledge about the current process instance
as well as their expert knowledge (”internal state”) to contribute to the progress of
the business process.

1.2. Research Questions and Goals regarding Long-running
Autonomous Processes 9

As a result, this work seeks to provide business process management tools for
such long-running, autonomous business processes. Based on the earlier discussion,
these processes are defined as follows:

Long-running autonomous business processes are business processes ex-
hibiting autonomous behavior, involve an average execution time greater
than a month but typically lasting multiple years and require the coop-
eration of autonomous process participants.

As a result of this definition, long-running autonomous business processes exhibit
three main aspects that set them apart from other business processes, especially the
traditional production business processes: The long execution times, autonomous
behavior of the processes and autonomous process participants. Autonomous process
behavior can be defined analogous to the definition of autonomous agents by Jennings
and Wooldridge as follows:

Autonomous process behavior describes the behavior of business processes
operating without the intervention of humans or others, and have some
kind of control over their actions and an internal state helping them adapt
in a changing business environment.

This definition means that while there is the notion of a structured process, implying
a business process model, the actual behavior of an enacted business process instance
exhibits a dynamic behavior which can adapt to a changed business situation without
remedial external intervention.

The third component of long-running autonomous processes, the autonomous
process participants, can be similarly derived from the same notion of autonomy as
follows:

Autonomous process participants are human or non-human actors per-
forming actions within the context of a business process without direct
intervention by other actors and have some kind of control over their
actions outside the business process and apply their expert knowledge in
those actions.

Unlike production business processes, where the actions are as closely defined by the
business process as possible, the participants of long-running, autonomous processes
retain a deliberate amount of independent control over their actions to allow them
to apply their expert knowledge as part of the process and give them the flexibility
for creative freedom commonly required as part of such processes.

These two properties of long-running execution time and autonomous behavior
lead to the central research questions for this work:

• What concepts, languages, systems and tools can be developed to improve the
support for long-running autonomous business processes?

10 Chapter 1. Introduction

Figure 1.3: Long-running autonomous processes are a particular challenge to business
process management due to their unique requirements which differ from production
and administrative business processes

In order to address this question, one can look at each of the two properties,
autonomy and long execution times, separately and derive the particular challenges
resulting from them. In addition, one can investigate what challenges can be derived
from their combination. Figure 1.3 provides questions for each of the two properties
as well as questions that affect the combination of the two.

Due to the long-running property of the business processes, the supporting work-
flows are expected to be executed on a workflow management system for a lengthy
period of time. This both increases the chance of the system failing during the time
frame the workflow is executing as well as increasing the impact of a failure by poten-
tially increasing the amount of time and labor lost. While autonomous processes are
more free-wheeling and can potentially be continued manually after a system failure,
the impact can still be severe due to the accumulated state of the process such as
documents and other business information that can be lost if the system fails. Since
the chance of failure multiplied by the impact of failure is defined as the risk, this
means the risk of failure for a workflow management system used for long-running
autonomous business processes is increased, leading to the first research question
that needs to be addressed:

• How can the risk of failure of workflow management systems be mitigated?

1.2. Research Questions and Goals regarding Long-running
Autonomous Processes 11

In addition, over the given period of time, changes in the business situation may
occur which can be predicted in advance requiring the workflow instance to adapt
to the new situation. Furthermore, these changes can happen at any point in the
processes, for example due to a participant identifying an issue or requiring a change
to earlier work. This requires the workflow designer to include a large number of
potential contingencies, leading to the following question:

• How can workflow models be prepared for predictable changes?

Not all of the changes that can occur over a long period of time can be predicted. A
development process may run into unforeseeable problems during the development
that require a different approach. While this question raises issues of flexibility,
it also includes aspects of agility since the preparation of the workflow models for
possible future changes is an agile aspect of workflow modeling.

Alternatively the business environment may change in an unpredictable fash-
ion, for example through announcement by competitors. Therefore, the following
question needs to be addressed:

• How can workflow instances allow for unpredictable changes?

Business processes and workflows are used to coordinate resources such as labor
within organizations based on a business strategy. Since the participants of long-
running autonomous business processes require a great degree of independence and
are responsible for many decisions, the question of such coordination becomes more
difficult:

• How can processes with independent participants be coordinated?

Since the participants are independent and processes must adapt to changes occuring
after process enactment, the question becomes how these adaptions are still in line
with the business strategy. Therefore, a connection should be made to the strategic
level of the business process management:

• What can be done to ensure a focus on business goals?

Finally, the participants of long-running autonomous business processes are also
autonomous regarding their organizational structure, which may not entirely conform
to an ideal process-oriented organization (see section 2.1). As a result, an answer
should be found for the following question:

• How can a workflow management system adapt to organizational structures?

In order to address these questions, a number of research goals affecting various parts
of a business process or workflow management system ought to be considered. These
can include both topics during design time, such as concepts or language features to
allow the inclusion of predictable changes as well as challenges that become important
during runtime like the question of system stability.

12 Chapter 1. Introduction

Figure 1.4: Long-running autonomous processes are a particular challenge to business
process management due to their unique requirements that differ from production
and administrative business processes

Software development being an example of a collaborative business process, the
software development community has long recognized the need for increased flexi-
bility and reaction to changing requirements during such processes. Such processes
also fall into the category of long-running autonomous business processes where the
development time of a software package can be very long (or even indefinite, if main-
tenance is included) and the participants need a considerable amount of freedom in
order to work effectively. The Agile Manifesto (see [7]) outlines a number of best-
practice principles that have proven themselves to be beneficial when performing
software development as part of an organized process. While the focus of the mani-
festo is centered primarily around software development, some of the principles point
towards general issues with creative, collaborative, long-running and autonomous
business processes. For example, the manifesto provides the following four principles
(from [7]):

1. Welcome changing requirements, even late in development. Agile
processes harness change for the customer’s competitive advantage.

2. Business people and developers must work together daily throughout
the project.

3. Build projects around motivated individuals. Give them the environ-
ment and support they need, and trust them to get the job done.

4. The most efficient and effective method of conveying information to
and within a development team is face-to-face conversation.

1.2. Research Questions and Goals regarding Long-running
Autonomous Processes 13

The first of the principles listed here indicates the need to allow a certain autonomy
towards the execution of processes, so they will be able to react to changes. The
second principle notes the necessity for deep integration with the business side. Fi-
nally, the third and fourth principles indicate the need for autonomy regarding the
participants in the process in order to allow them the necessary leeway to apply their
expert knowledge and exchange information with each other.

Alpar et al. also emphasize the ability to react to changes and provide a more
concrete definitions of the terms agility and flexibility (see [125]):

• Flexibility refers to the ability of information systems to easily adapt to current
changes.

• Agility refers to preparedness of information systems for future changes.

Since one cannot be prepared for future changes without being able to react to
current changes, as shown by Alpar et al., a high degree of flexibility is necessary in
order to attempt the introduction of agility.

Long-running autonomous business processes from a general business process
management perspective introduce a number of factors that necessitate both flexi-
bility and agility such as the high degree of freedom afforded to the process partic-
ipants increase the chance of introducing changes. The long execution time further
increases this chance by extending the time period during which changes can occur.

As a result, supporting long-running autonomous business processes requires
workflow models, workflow engines and workflow management systems to offer op-
tions to support flexible and agile approaches as opposed to the more rigid mod-
els and frameworks emphasized by traditional business process management with a
focus on often-repeated, highly-structured production and administrative business
process. As a result, the tools and methods that help to support long-running au-
tonomous processes are called agile business process management in this work, using
the following definition which is based on the general definition of business process
management used by Weske (see chapter 2 and [161]) as well as the ideas of flexibility
and agility provided by Alpar et al. (see [125]):

Agile business process management includes concepts, methods, and tech-
niques which increase both flexibility and agility of the processes and
their environment in order to support the design, administration, con-
figuration, enactment, and analysis of long-running autonomous business
processes.

Based on the research questions, a number of research goals can be derived (see
Figure 1.4). The first research question addresses the issue of long-term stability of
the system. A workflow management system accomodating these questions needs to
remain stable despite running over multiple months. As a result, the first research
goal is to increase the robustness of the business process or workflow management
system:

14 Chapter 1. Introduction

• System Robustness: The long execution time of the processes means that there
are higher risks of failure, not only with regard to the chance of a system failing
but also the impact such failure may have on the overall system, so that a fault
or deliberate shutdown of parts of the system does not immediately result in
complete failure of the whole system. The system should therefore be resilient
to change and degrade gracefully.

Another research question asks how business process models can be developed that
can include options to react to changes in the business environment or based on the
autonomous workflow participants. While such alternative courses of action can be
included in some form in existing workflow modeling languages, this is not always
sufficient for long-running autonomous processes (see chapter 3 for a discussion on
this topic). As a result, modeling languages need to be developed or improved to
tackle this question:

• Workflow Model Agility : Since the business process will be executing for a long
time, the business situation may change while the process is running or revisions
of a later stage may even invalidate the results of an earlier state due to issues
identified only at a later point in the process which were not apparent at an
earlier time. Another issue arises from the fact that research and development
processes are conducted in a particular way due to their creative and autonomic
nature (see 1.2): Often, a long development processes is divided into stages,
phases or milestones, which will be reached by meeting certain criteria after
a certain time. However, constraints which become apparent at a later stage
of the process may necessitate changes that require verifying and adjusting
development done to reach the previous milestone. This means that steps
which were already considered finished have to be done again at a later stage
in the process. As a result, long-running autonomous processes must be able to
adapt to such new situations without manual outside interference by allowing
the inclusion of contingencies in the business process model without excessively
increasing the complexity of that model or including modeling elements simply
for technical reasons in the model. It allows the resulting workflows to flexibly
react to changes and allows workflow designers to increase agility by preparing
the workflows for potential future changes.

The participants in long-running autonomous business processes are independent or
autonomous actors. This means that in order to perform adequately, they require
an increased freedom to chose when to perform certain actions based on their own
expertise while a traditional approach to a workflow emphasizes control over the
processes by deciding which actions must be performed at a given point in time.
One therefore must seek a balance between the control aspects of workflows and the
independence of the workflow participants:

• Balance Global Control and Local Autonomy : One goal of business process
models and workflow models is to impose a structure or guideline on how
a particular business process is to be performed. On the other hand, the

1.2. Research Questions and Goals regarding Long-running
Autonomous Processes 15

participants in a long-running autonomous business process require a certain
autonomy within their area of contribution to decide on which actions are
necessary. A workflow model language therefore has to address how to balance
between giving the participants free reign over their labor in their local area
of expertise while still maintaining as much global structure as possible given
the nature of the processes.

Due to their autonomic nature, both the participants and the workflows themselves
are relatively flexible in selecting work and performing it. The requirement to balance
global control and local autonomy means that the control over the process by the
strategic planning of the organization is weakened. As a result, one has to address
how to maintain a focus on the business goals of the organization despite this loss of
control:

• Strategic-operational Cohesion: Autonomous process participants and
autonomous processes have a greater degree of flexibility and reduced control.
A business process and workflow modeling language has to somehow maintain
a connection to the strategic goals of an organization despite this reduced
direct control.

While it is always desirable to structure an organization in alignment with its business
processes (see chapter 2), it is not always possible to impose such structure on an
organizational layout in all cases. In particular, research and development processes
often involve the inclusion of a diverse set of people across the organization, often
in contrast to the usual structure used (for example, the production manager may
be required to give his input as to how a new prototype could actually efficiently
be produced). As a result, different forms of organizational structures have to be
supported:

• Organizational Agility : A business process management system should offer
support for different forms of organizational structures. This includes tradi-
tional functional organizations as well as process-oriented ones with a focus on
a different set of processes. This can include bridging technical issues such as
specialized IT systems and approaches to information management.

The final research goal centers around the question regarding business changes or
changing requirements based on the autonomous behaviors of the participants and
processes which cannot be predicted during the design of the model, meaning that
the changes must be performed after the workflow instance has been enacted:

• Workflow Instance Agility : Business changes can require that a workflow in-
stance which has already been enacted be modified since the change could
not or was not predicted during workflow or business process modeling. This
means that the running workflow instance needs to be adapted, preferably in a
fashion capable of maintaining a structured approach. In addition, the change
should ideally be implemented by process experts.

16 Chapter 1. Introduction

The last research goal is only partially addressed by this work for the following two
reasons:

• An approach for workflow instance agility is already available in the form of
ADAPT2 (see 3.10), which demonstrates the concept in principle.

• The current runtime approach for executing the long-running autonomous busi-
ness processes with the approach proposed here would require substantial ex-
pansion to support this goal. Nevertheless, a discussion on a possible approach
can be found in section 10.2.

These research goals represent an attempt to tackle processes that are long-running,
exhibit autonomous process behavior and allow for autonomous business partici-
pants.

The aim is to improve the support for such business processes by addressing some
of their more pressing requirements identified by investigating primarily research and
development business processes and thus may not yet represent the full spectrum of
business processes of this type.

As a result, agile business process management may include other issues which
have not yet been identified based on similar business processes with slightly different
requirements. In addition, the modeling languages, techniques, systems and tools
developed for this approach may be useful for other types of business processes.

This work therefore represents an attempt to improve support beyond traditional
means for such business processes, nevertheless further work may be yield additional
improvements for such processes as well as the opportunity to expand this work to a
broader spectrum of business processes. The contributions of this work are centered
around the business process management lifecycle introduced in the next chapter
(see Fig. 2.6) with the aim of supporting long-running autonomous business process
in every stage of the cycle. The major contributions of this work are as follows:

• The Goal-oriented Process Modeling Notation (GPMN) modeling language as
presented in chapters 4 and 5, providing support for the design and implemen-
tation phase of the lifecycle.

• Execution of GPMN workflows using a model conversion-based workflow engine
shown in chapter 6, which is part of the solution for the execution phase of the
lifecycle.

• The distributed workflow management system approach and implementation in
chapters 7 and 8, which provides the remaining requirements for the execution
phase as well as support for the monitoring phase of the lifecycle.

• An approach for analysing and validating GPMN workflows using a simulation-
based approach presented in chapter 9. This provides an approach for tackling
the analysis phase of the lifecycle.

The structure of this work is as follows: The next chapter will provide an overview
of business process management in general; however, since this involves a relatively

1.2. Research Questions and Goals regarding Long-running
Autonomous Processes 17

broad area of research, will focus on particular aspects that are relevant to the
business processes tackled by this work (see chapter 2). Following this, a spectrum
of typical business process modeling languages is introduced and their limitations
regarding long-running autonomous business processes is evaluated (see chapter 3).
Afterwards, chapters and introduce goal-oriented business process modeling and the
Goal-oriented Business Modeling Language (GPMN). The GPMN workflow engine
for executing GPMN workflows is introduced in chapters 4, 5 and 6. The concept of
distributed workflow management is introduces in chapter and an implementation
is presented in chapters 7 and 8. Chapter 9 provides an approach for simulating
and validating goal-oriented workflows in combination with a simulated workflow
management environment. The final chapter provides a major deployment scenario
and evaluation of the overall system components and the system is evaluated based
on the originally introduced research goals for agile business process management.

18 Chapter 1. Introduction

Chapter 2

Business Process Management

Business process management owes its legacy to a variety of disciplines, most promi-
nently in business administration, due to being directly applicable in that field. It
also touches a large number of stakeholders such as business managers, IT profes-
sionals, software developers, business consultants and business employees in general.
Each group has its own unique perspective on processes and different priorities re-
garding various aspects of business process management.

For example, a business manager may be interested in increased efficiency or bet-
ter customer service, a software developer may be concerned with (semi-)automated
execution of business process and integration with legacy software. An IT profes-
sional is likely to be interested in administrative overhead in terms of necessary IT
infrastructure like servers and with security aspects of such an effort that spans the
entire organization and may even include the organization of suppliers. A business
consultant interest often includes opportunities to optimize already existing process
and general employees of an organization want to know how it will affect their work
and are concerned about job security.

Furthermore, like any essential business topic, it is affected by short-lived termi-
nology. As a result, an very large vocabulary has been developed to describe various
aspects of business process management, which is not always used in a well-defined
or consistent manner (see [156]). In order to clarify this situation, this work will use
the following definitions for general business process terms:

A business process organizes business activities within an organization in order
to reach an organization goal. In [161], Weske defines a business process as follows:

A business process consists of a set of activities that are performed in
coordination in an organizational and technical environment. These ac-
tivities jointly realize a business goal. Each business process is enacted by
a single organization, but may interact with business processes performed
by other organizations.

Note that this definition of business processes does not include any sort of automation
or even organized effort to describe them. In fact, even today business processes exist
that were created implicitly by the individual effort of its participants. The disci-

19

20 Chapter 2. Business Process Management

pline that concerns itself with explicit administration of business processes within an
organization is called business process management, which Weske defines as follows:

Business process management includes concepts, methods, and
techniques to support the design, administration, configuration,
enactment, and analysis of business processes.

The central aspect of business process management is the orientation around cus-
tomers. Despite the obvious importance of customers, this is not always a given in
most organizations. Schmelzer and Sesselmann explain this as follows (translated
from [64]):

It depends on the satisfaction of the customer whether they buy the
offered products and therefore ensure the existence and future of a com-
pany. Despite their outstanding importance, in practice customer rela-
tions and customer satisfaction are often neglected.

The authors additional points out some additional facts that emphasize not only the
general difficulty of companies to address customer satisfaction but also point out a
particular deficit of German businesses in this area (translated from [64], based on
[70], [29] and [66]), according to this:

• German companies possess an inferior knowledge of their customers and cus-
tomer profiles than companies in other European countries,

• there exists a need to catch up investigating the conceptions and desires of
customers (customer perspective)

• 72% of the companies recognize the great importance of customer-orientation
but only 19% of the companies act according to this principle

• 20% of the executives and 66% of the employees do not know their own cus-
tomers

• managers are more intensely concerned with their competition than their cus-
tomers

• 40% of the employees are unaware of the importance of satisfied customers

• the acquisition of a new customer is five to eight times as expensive as the
enduring loyalty of existing customers

• ISO-certification failed to improve customer focus

One approach to addressing these concerns is the introduction of business processes.
Schmelzer and Sesselmann emphasize this point as follows (translated from [64]):

A reliable approach to remedy the presented deficits is the introduction
of business processes. Business processes put customers and customer
relations at the center. Using business processes the thoughts and actions

2.1. Organizational Aspects of Business Process Management21

of the whole company will be focused on customers. The more efficiently
business processes fulfill customer demands and expectations, the more
satisfied are the customers and the more successful is the company.

This customer-centric approach is often reflected by the fact that business processes
often start and end with the customers, usually by receiving a customer request
to start the business process and ending with the customer receiving the desired
goods and services. Note, however, that the customers of business processes are not
always the same as the customers of a business. Again, Schmelzer and Sesselmann
distinguish two types of customers (see [64]):

• External customers are customers of the business or organization that approach
the organization for the offered goods and services. As such, they largely
represent the customer base of the organization and are the potential receivers
and users of the output of the organization. In many cases, these customers
are end-users who intent to use or apply the products and services themselves.

• Internal customers on the other hand participate themselves in the business
processes of the organization. In fact, any participant in a business process who
performs a part or even a single task of a business process is both the customer
of the business process step preceding their part and the supplier of the business
process step following their part. They often belong to the organization itself
in the form of competency centers or other employees tasked with parts of a
business processes.

Internal customers are as critical as external ones. If a supplier provide a flawed
output to an internal customer it either results in the customer being unable to ade-
quately perform their own part in the business process and thus ultimately providing
an external customer with a poor experience down the line. Alternatively, the inter-
nal customer has to supply additional effort in terms of labor and capital in order to
make up for the flaws in the supplied product or service.

As a result, the goal of business process management is to put the business pro-
cesses and therefore the customers at the center of operations and efforts of the
organization by providing a number of techniques, methods and approaches for tack-
ling the business processes within organizations. However, due to their orthogonal
nature with regard to traditional business organization, one of the core hurdles for
the introduction of business processes and business process management is the or-
ganizational layout and structure. The next section will provide an overview of the
changes necessary for organizations introducing business process management and
the challenges that result from this introduction.

2.1 Organizational Aspects of Business Process Manage-
ment

While the previous definition of business process management encompasses the
methodologies and best practices, in terms of organizational strcutures business

22 Chapter 2. Business Process Management

process management is an approach for managing a organization or business that
centers its activities around the activities or work performed by the organization.
This stands in contrast to the traditional approach of structuring an organization
along specialized departments providing functions (see [123]). Schmelzer and
Sesselmann provide the following properties to differentiate the two approaches in
[64]:

Functional Organization Process Organization
vertical alignment horizontal alignment

high division of labor integration of labor
focus on execution focus on object processing
deep hierarchies flat structures

status-centric thinking business success thinking
power-oriented customer- and team-oriented

department goals process goals
goal: cost efficiency goal: customer satisfaction, productivity

centralized external controlling decentralized self-controlling
controlled information free and open information
efficiency projects continuous improvement

substitute processes, redundancy focus on adding value
complexity transparency

Figure 2.1: Managing organization using business processes differs from the more
traditional functional approach (translated and adapted from [64])

The listed properties highlight the differences between the two organizational ap-
proaches, the more traditional functional structure which has been the focus of large
organizations focused on mass production and the more modern, service-oriented
form of organization based on business processes. The following will attempt to
illustrate the properties of both organizational forms.

2.1.1 Functional Organizations

Both functional and process-oriented organizations attempt to follow goals with the
aim of producing planned results, but the source and target of both differ (see 2.1).
Functionally-oriented organizations are structured along the lines of highly special-
ized departments. A functionally-oriented organization is vertically aligned, which
means that each department is focused solely on best fulfilling its own function,
i.e. the goals of the department is performing its role instead of contributing to the
business process.

This organization results in a strong division of labor: Each department special-
izes on its function and can optimize it to produce good ourcomes with regard to
their results, which leads to an alignment vertical to the business process (see 2.2).
Each department is focused on executing its function and due to deep hierarchies, the
department management is given substantial autonomy to organize the structure of
the department which other departments can only influence by appealing to higher
levels of management.

2.1. Organizational Aspects of Business Process Management23

Figure 2.2: Functional organization are aligned vertically, with each department
focusing on best performing its function (translated and adapted from [64])

This results in status-centric thinking, where department heads compete for pres-
tige, such as the department’s size, its importance to the business and the attention
from higher management which it may or may not receive. Along with deep hierar-
chies, this also orients the department and its members to seek power and influence
within the organization, either for themselves or their departments.

Each department adheres its own departmental goals and objectives. For exam-
ple, the accounting department has a strict focus on performing excellent and efficient
accounting, while the production department focuses on low-cost production. As a
result of this, this isolation of departments along with the status- and power-centric
thinking within them result in the potential of department goals diverging from con-
tributing to the overarching process goals: For example, the accounting department
may attempt to impose onerous documentation requirements on the production de-
partment since it reduces costs, increasing the cost during production but reducing
the cost for the accounting department.

If the difference between the cost reduction and the cost increase is negative, the
overall cost for the business process increases to the detriment to the organization.
Nevertheless, this goal may still be pursued by the accounting department since it
benefits their interests (to the detriment of the production department).

The information the departments possess is also tightly controlled internally and
not generally conveyed to other departments. In part, this is due to the aforemen-
tioned goal and power dynamics. However, another factor is the impact departmental
isolation, deep hierarchies and vertical orientation: Interdepartmental information
exchange can generally only be accomplished by conveying the information up and
down the hierarchy. Specifically, this means that information has to travel up the hi-
erarchy until it reaches a point where the receiver is responsible for both departments
before it can be passed down towards the targeted department. In the worst case
scenario, this means the top management of the organization. It it then processes
and passed down the hierarchy again until it reaches its final destination.

This not only results in fairly long delays for information exchange, it also involves

24 Chapter 2. Business Process Management

more people and resources than necessary. Even relatively minor details are passed
to a very high level of management, which then has to deal with this information
despite the fact that it has already been escalated beyond its requirement. This
means that the higher layers of management become impeded by a large amount of
very detailed information and become a bottleneck of information exchange.

Since functional organizations hardly acknowledge the existence of business pro-
cesses, departments tend generate and adopt implicit and ad-hoc substitute processes
which emulate the process behavior. This is usually done through institutional knowl-
edge. A typical example is setting up interfaces between departments where business
objects are passed from one department to the other since they are not regarded as
a particular focus as they are in process-oriented organizations. However, these in-
terfaces have a number of disadvantages (first three from [123] and [64]):

• Interfaces are storage locations, where business objects are stored for a cer-
tain amount of time. This is the result of temporal synchronization problems
between departments, where one department has finished its tasks on the ob-
ject but the next department is not ready to continue working on it. This
introduces inefficiencies and delays.

• Interfaces are a source for errors since they invariably lose information regard-
ing interrelation between tasks.

• Since the responsibility for a department starts and ends with interfaces, they
are a source for organizational irresponsibility. In case of mistakes and issues,
it is difficult to trace the responsibility for the issue to one department or the
other, which is compounded by the previous point of interfaces being an error
source.

• Finally, interfaces are a barrier for the transmission of knowledge, since im-
plicit experiences, knowledge and proficiencies must be made available to allow
unambiguous communication without loss of context. In design, this challenge
is known as the ”throwing it over the wall” problem, where one department
finishes a design step and simply passes the result to the next department
while accidentally omitting information which is vital for the following steps,
resulting in otherwise avoidable errors and delays in the next step (see e.g.
[170])

The resulting landscape consists of a number of process islands for each department,
increasing the necessary coordination effort required to be performed by manage-
ment. Since, as as mentioned before, the management is already weighed down by
acting as an interdepartmental communication channel, the load on this particular
bottleneck increases further.

Nevertheless, functional organization has its merits, which is why it was adapted
in the first place: Once coordination has been accomplished and responsibilities are
clearly assigned, departments can drastically increase productivity through internal
specialization and optimization.

2.1. Organizational Aspects of Business Process Management25

In a static business environment, this means the organization can eventually
reach an optimum of efficiency and productivity. In the past, this situation was
pretty close to the norm (cf. [143]): Markets were simple and stable, technological
progress was steady but relatively slow, product life cycles were long and the focus
was on mass production. In such an environment, the goal of functional organization
of cost efficiency fit the situation.

However, nowadays the business environment is more dynamic and volatile: Mar-
kets change rapidly, as do customer demands. Technology often progresses at a more
rapid rate, quickly making products obsolete and shortening product life cycles.

This highlights the main issue of functional orientation of organizations when
used in a dynamic business environment: Once an organization needs to change and
adapt its processes, the coordination effort, the challenges of communication and the
difficulty of defining interfaces between departments arise anew. This is not a major
issue when it happens rarely, but such adaptations are now required of organizations
at an increasing pace.

2.1.2 Process-oriented Organizations

Process-oriented organization attempts to mitigate the issues of functional organi-
zations and improve businesses by allowing organizations to increase their flexibility
and react more rapidly to a changing environment. This approach calls for realigning
the focus of an organization with its processes instead of the functional departments.
This results in a different set of priorities (see 2.1):

First, the alignment of the organization is no longer vertical along the lines of the
departments, but horizontal along the lines of the processes (cf. 2.2). This means
there is less of an emphasis on division of labor but rather the integration of perfomed
labor between departments. Instead of the mere execution of functionality, process-
oriented organizations focus on the actions required to process business objects as
they pass through the organization.

By aligning an organization with its business processes, previously-needed deep
hierarchies used to coordinate fragmented departments is no longer necessary. The
business process and participants are instead coordinated by a dedicated business
process manager whose sole responsibility is the smooth and efficient execution of
the business processes they have been assigned.

Specialized labor is still required in such a system but, compared to a functional
organization, the importance of the departments is reduced: Instead of forming
isolated and self-contained silos, they become service or competency centers providing
services to the business processes. This means that the job of the management of
those centers is reduced to quickly and efficiently introduce the services the business
process managers have requested due to necessity as part of the business processes.

The coordination effort is provided by a business process manager with an over-
arching view on the business process and how it interacts with the organization,
instead of multiple coordinators in each department with insufficient information at-
tempting to provide the necessary labor. The resulting management structure can

26 Chapter 2. Business Process Management

be relatively flat, often with only two levels; consisting of the business process man-
agement implementing the strategies of top management, and the competency center
management providing services to the business processes.

Since the focus of the organization is the business processes, the participants be-
come stakeholders in its success. As a result, instead of focusing on the personal and
departmental status, participants’ thoughts and efforts are now centered around the
business processes. Considering that the business processes are meant to represent
organizational strategy, the thinking of the participants is now more closely aligned
with the overall success rather than status.

In addition, the flat structures and competency centers provide fewer incentives
for power-orientation. The competency centers are no longer power bases like the
functional departments and the flat structures provide fewer opportunities for power
struggles. Instead, since the business process becomes the center of attention, the
focus shifts to the business process team and the customers it aims to serve.

Instead of employing a monolithic and centralized management control, process-
oriented organization use decentralized and process-based management control. The
management control is exercised as part of the business processes and emphasizes
self-coordination (cf. [64]). One of the benefits of this approach is that it offers
opportunities for performance increases and learning process that not only benefit
a single participant but also generate a knowledge base for the benefit of the whole
organization.

These benefits are furthered by the free and open exchange of information. In-
stead of departments hoarding potentially useful knowledge and experiences, they
are exchanged due to the emphasis on common business processes. Participants
are encouraged to propel this exchange by encouraging them to submit suggestions
for improving the business processes, leading to a cycle of continuous improvement
instead of separated and uncoordinated projects.

Synergistically, this leads to an overall culture of transparency, where power
struggles are reduced as the focus centers around the goals of the business process
whose sole aim is to provided added value to its customers. The free exchange
of information and the horizontal view of the business process managers reduce
redundancies compared to functional departments and their rigid and error-prone
inferfaces between them.

However, the main benefit is derived from the fact that it allows an organization
to adapt with high flexibility and reorganize available resources according to the
needs and demands of its customers. Schmelzer and Sesselmann emphasize this as
follows (translated from [64]):

Process-oriented organizations facilitate a flexible reaction based on the
needs and demands of the market and the customers. The common view
on the customer dictate the goals and actions of the employees. This
common orientation enforces a strong coordination effect and supports
horizontal cooperation and collaboration.

However, introducing business process orientation is a demanding task for an or-

2.2. Types of Business Processes 27

ganization. As a result a myriad of methodologies, techniques and organizational
structuring is required to align organizations with their business processes. This
is even harder for pre-existing organizations which are already structured in a func-
tional manner; nevertheless, the benefits derived from it and its necessity in a modern
business environment are especially important for organizations that need to sustain
themselves in competitive markets (see [135] and [150]).

2.2 Types of Business Processes

Business processes are used by a large variety of organizations, most importantly but
not exclusively by commercial businesses. These organizations have different pur-
poses, are structured in a different ways and, as a result, have different approaches
to fulfilling their purpose. As a result, business processes cover a wide area of ap-
plications and can differ tremendously between organizations, despite the existence
of certain standard processes (see [149]) which are applicable for typical standard
business situations or needs.

As a results, multiple attempts have been made to propose general categories
for business processes. A very common approach is dividing business processes into
primary business processes and secondary processes (for example, see [157], [41]
and[146]). In addition, the concept of tertiary business processes, introduced by van
der Aalst and van Hee in [1] is sometimes used, as follows:

• Primary Business Processes are processes which are directly involved with the
main purpose of the organization. Organizations generally exist in order to
fulfill a specific purpose, for example, the production of vehicles, the sale of
goods or the collection of taxes. Primary business are directly involved with
that purpose. For example, for a car manufacturer, the production process for
new cars would be a primary process.

• Secondary Business Processes manage issues an organization has to deal with
but do not directly contribute to the core purpose of the organization. Despite
not directly furthering the main purpose, they are nevertheless necessary for
the organization, either by maintaining the existence of the organization or
contributing indirectly towards the core purpose. A typical example would be
an accounting purpose, since it doesn’t generate any product for the business
but it is still required for the organization.

• Tertiary Business Processes are a category of meta-processes that deal with
managerial issues arising from the coordination of primary and secondary pro-
cesses. This includes organization of meetings and reports and adjustment of
business strategies. If the term tertiary business processes is not used, they are
counted as secondary business processes.

Schmelzer et al. also give a number of examples for primary and secondary business
processes in [64]. According to them, primary business processes not only deal with

28 Chapter 2. Business Process Management

the production of goods or provisioning of services like order execution processes and
service processes, but also include innovation processes, product planning processes,
product development processes and marketing processes.

Secondary business processes include controlling processes, quality management
processes, IT management processes, resource management processes, financial man-
agement processes, human resource management processes and strategic planning
processes.

The primary difference here is that primary business processes provide something
for an external customer, meaning entities outside the business employing the pri-
mary business processes. Secondary business processes on the other hand deal with
internal customers, i.e. customers who are actually a part of the company that uses
those processes.

In [134] Porter notes that primary business processes are the business processes
that generally convey a competitive advantage to a business, since they benefit ex-
ternal customers and are often integral to the core competencies of a business, to
the point that business processes that are particularly tied to the core competencies
and competitive advantage form the special class of core business processes. In con-
trast, secondary process may contribute to the competitive advantage but only do
so indirectly. In addition, secondary processes are often required by many types of
businesses and thus are usually standardized, allowing an opportunity for business
process outsourcing (BPO), where a business process is performed by an outside
entity (see [168]).

This approach mostly revolves around the idea of a core mission of an organiza-
tion. However, sometimes it is more helpful to distinguish business processes based
on their abstraction level. Here, Weske [161] offers five levels of abstraction, where
more abstract levels describe the organization’s approach in a broad but less detailed
manner, while more concrete levels include more implementation details but have a
narrower focus.

2.3 Organizational Challenges

Introduction of business process management is a challenging task for any entity,
whether it is an organization just starting to structure itself or an organization with
an existing structure attempting to introduce and formalize its business processes.
In fact, business process management is only able to maximize its full benefits in a
completely process-oriented organization (see Sections 2.1 and 2.1.2) as described by
Schmelzer and Sesselmann as follows (translated from [64]):

In the long run, business processes can only develop the desired per-
formance in process-oriented structural organizations. As a guideline,
structures should follow the processes and not the processes the struc-
ture. As a result, the introduction of business processes should be taken
as a starting signal for a process of change with the goal of a process-
oriented structural organization.

2.3. Organizational Challenges 29

This statement emphasizes the need for restructuring organizations in order to ul-
timately achieve a process-oriented structure. Nevertheless, the authors also note
the difficulty in introducing such an organizational form especially for organizations
with pre-existing structures (translated from [64]):

The replacement of a functional organization with a process-oriented
organization is a far-reaching organizational intervention which in partic-
ular affects the people in position of the middle management layer. This
strenuous effort has only been attempted by few companies and managers
in Germany. This is demonstrated by organizational charts of German
companies, which, as a rule, exhibit functions and only rarely business
processes.

[...]
For many managers, thinking in terms of business processes is more

difficult than thinking in terms of functions and hierarchies. Often man-
agers and their employees are not yet prepared for their duties and re-
sponsibilities in process organizations. Exceptions are production and
logistics, for which process-orientation is a reality in most cases.

In essence, business process management and process orientation introduces consid-
erable change in any organization, as shown in [64]:

• Rather than functions and departments, business processes are now at the
center of the organization – the organization changes.

• Instead of department heads, process owners are responsible for the business –
positions and rules change.

• Only things that benefit the customer have value; everything else is a waste –
activities and work content change.

• The employees control and improve the business processes by themselves – the
roles of management and employees change.

• Instead of cost center budgets, the timing, quality and cost of the business
processes are the fundamental operative control quantity – controlling and
reference inputs change.

In order to introduce business processes in organizations, management has to have
a different set of skills and responsibilities while their employees have to take on
additional responsibilities which were not previously part of their skill sets. On top
of that, a reorganization processes involves whole companies and is an extremely
strenuous and risky process which, if it fails, can result in dire consequences for the
organization both in terms of time, cost and morale. This risk can be high enough for
the whole company to be at stake, resulting in managers seeking alternative solutions
to mitigate risk.

This is often compounded by resistance from within departments to adapt the
new organizational structures due to the persistence of power-oriented thinking in

30 Chapter 2. Business Process Management

functionally-oriented organizations (see section 2.1). Departmental heads wield con-
siderable power in functional organizations which they would necessarily have to
partially surrender to the introduced business process manager. As shown in section
2.1, functional organizations actually implicitly encourage a power-centric culture,
making it harder for the participants to cede power for the good of the organization
and dismantle traditional departments in favor of business process-oriented compe-
tency center, in which their role is reduced to providing services for the business
processes of the organization.

Resistance to the introduction of business process management and process-
oriented structures can be grouped into two categories, personal resistances and
organizational resistance, as show in [64]:

• Personal Resistances

– Necessity of the change is not recognized

– Goals, approaches and results of the change are misunderstood

– Fear of the unknown

– Fear of status loss

– Threat to existing relations

– Threat to existing work activities and habits

• Organizational Resistances

– Incentives reinforce the status-quo

– Threat to the existing power equilibrium

– Conflicts between groups inhibit collaboration

– Incompatibly of the change process and organizational culture

– Resource commitments to past decisions and actions

Sometimes, especially in smaller organizations, at least some of these resistances can
be overcome. For example, non-recognition of the necessity of the new approach and
misunderstood goals, results and approaches can be mitigated using an information
strategy that adequately conveys the intents of the process to the members of the
organization. The fear and threat factors on the other hand are often elevated by
ill-conceived attempts to introduce business processes as a mere cost-saving measure,
which instantly sparks resistance to the perceived cost-cutting attempts, especially
among rank-and-file employees rather than management. The following mitigating
tools are provided in [64]:

• Information, communication and training

• Participation

• Relief and support

2.3. Organizational Challenges 31

• Visible success

• Negotiation and proposing compromises

• Coercion and pressure

Aside from the already explained communication aspects, participation in the process
is a key factor. A properly introduced business process management has a strong
participatory component which involves helping and encouraging employees to point
out flaws and help improve the business processes the organization uses (see [72]).
This can be very motivating to employees since it empowers them to help shape and
form the way their organization operates.

Relief and support is necessary if responsibilities start to exceed the capacity of
participants to meet them. It must be recognized that business process orientation
often comes with additional responsibilities beyond mere execution of labor which
must be fairly shared in order to grow acceptance within the organization.

As soon as success of the approach becomes evident, resistance generally demi-
nishes and participants become more eager to support the process of change.

In case resistance persists, two more options are available: The first is to negotiate
with critical participants resistant to the proposed change and attempt agree on a
compromise that is acceptable to all parties.

However, this may not always be possible, which leads to the option of last
resort: coercion and force. Obviously, coercion and pressure should be the least
favored options since it reduces morale and may even increase the support for further
resistance. As such, it is only an actual option if the resistance is weak and not very
serious or widespread.

Nevertheless, sometimes the costs, required effort and resistances overcome the
will of an organization to introduce business process management. That said, busi-
ness process management offers a number of approaches to mitigate this problem.
For example, one popular technique is to retain the vertical departmental structure,
thereby avoiding the associated resistance towards and the substantial effort to im-
plement vast organizational change. As a substitute, organizations can introduce an
additional horizontal layer on top of the existing business structure to represent the
business processes and business process management. This approach is known as
a matrix process organization (see [55]) since the process management layer is put
in place on top of an orthogonal functional organization forming a two-dimensional
matrix.

By retaining the familiar functional structure, the reorganization effort and the
resistance by individual participants or the whole organization are avoided while nev-
ertheless allowing for the introduction of business processes. All the organizational
positions like the business process manager are available.

However, this approach is a compromise which, while avoiding the expense of
transitioning to a full process-orientation, comes with a number of disadvantages:

• Responsibilities remain unclear. In a true process-oriented organization, the
business process manager is responsible for the process and can enforce nec-

32 Chapter 2. Business Process Management

essary changes in the service and competency centers to allow for a smooth
execution of business processes. In a matrix organization, the departmental
heads retain most, if not all of their power as well as the traditional incentives
to protect their departments. The business process manager may be unable to
enact changes which are vital to ensure efficient business processes.

• Deep hierarchies and monolithic departments are retained. The business pro-
cess oriented management is only added to the management layers of the com-
pany. This means that a substantial amount of redundancy is built into the
organization. The lean and flat management structures that are one of the
goals of process-oriented organization cannot be achieved as envisioned.

As a result, a process-oriented organization is always more desirable over the compro-
mise of a matrix organization. However, this goal may not actually be achievable,
especially in very large organizations with considerable inertia. This means that
while process orientation is the superior approach, real world business process man-
agement and business process management systems will have to deal with matrix
organization types at least in the medium term.

2.4 Introducing Business Processes Management in Or-
ganizations

The right approach to introducing business process management into organizations
depends on their individual situations. For example, a newly-formed organization
has different challenges than a organizations with pre-existing structures (see section
2.1). The first step for introducing business process management is to identify the
business processes which the organization needs. In general, there are two basic
approaches used to identify business processes, a bottom-up approach which attempts
to analyze the internal behavior of the organization in order to identify existing
substitute business processes and the top-down approach which attempts to define
new business processes.

The business strategy of the organization gives an outline for the overall organi-
zation and describes both the purpose of the organization and how the organization
aims to fulfill that purpose. The business strategy therefore represents the most ab-
stract level of business process management. A business strategy contains a number
of useful information which can be used to identify business processes. Schmelzer
and Sesselmann give the following examples in [64]:

• Target markets and customer groups

• Customer requirements, needs and expectations

• Competitive strategy

• Core competencies

2.4. Introducing Business Processes Management in
Organizations 33

• Critical success factors of the business

• Strengths and weaknesses of the business

• Business goals

The business strategy can not only be the starting point for a top-down approach
but also offers a reference point for a bottom-up approach to the introduction of
business process management. A business strategy describes the general approach of
an organization; this then needs to be refined into something more tangible which the
organization can perform. Since business goals are ideally derived from the business
strategy, taking other factors such as target markets and customers into account,
they represent the goals of the organization itself.

Ideally, business goals describe clear, achievable and sometimes long-term mile-
stones for the organization to achieve. They are determined using the business strat-
egy; moreover, if all business goals are found and defined, they collectively represent
a successful implementation of the business strategy once accomplished.

The bottom-up approach usually involves a process called Business Process Re-
design or Reengineering (BPR, see [35]). The first step of this process is to identify
existing business processes within the organization. This can be accomplished by
creating a process map. These maps highlight the current business processes in the
organization, the resources they use as well as the participants and departments that
are assigned to them. This process map represents an organization’s status-quo and
the starting point for the bottom-up process.

In the next step the processes are analysed in detail and the existing processes are
compared with the business strategy to identify divergences, redundancies and waste;
for example, by identifying redundant activities or even entire business processes that
are unnecessary and eliminating them. This is part of another research and practice
field called Business Process Optimization (BPO, see [158]), which is, however, not
the focus of this work. In addition, IT capabilities are considered and how they could
benefit the business processes.

After the business processes are analyzed in detail, optimized, then either adapted
or eliminated to match the business strategy, a new process map is created to de-
termine the goal of the BPR for the organization. This new process map is then
balanced to determine the necessary resources for the organization. A useful tool to
be employed in this process is the balanced scorecard (see [94]), which highlights key
data of the organization with regard to its business strategy (see [93]).

The top-down approach on the other hand does not take the existing business
processes into consideration. Instead, the business strategy is used directly to de-
termine the business processes. Since the business strategy is often very abstract,
so are the first business goals derived from it. These top-level business goals often
only describe very large-scale targets in very broad terms for an organization, such
as becoming the innovation or cost leader in a certain market or providing certain
goods and services to customers.

34 Chapter 2. Business Process Management

As a result, this first level of goals does not yet provide concrete instructions for
the participants of an organization and, in fact, often need to be further refined to
formulate concrete actions. This can be done by deriving subgoals from the top level
business goals, which, just like the top goals represent the successfully implemented
business strategy, represent the successfully achieved top level business goal. If the
derived subgoals are still somewhat unclear, they can yet again be further refined
into another layer of subgoals until the exact targets and outputs can be determined.

Business Strategy

Goals

Organizational
Business Processes

Operational
Business Processes

Implemented
Business Processes

determine realize

determine realize

determine realize

determine realize

Figure 2.3: Business process management starts at the strategic level of business
planning and extends down to the operational level, where processes can be (par-
tially) automated (based on [161])

After the business goals are determined, the next, more concrete layer is called
organizational business processes. This typically represent the first layer where busi-
ness processes are used and process models become important (cf. 2.3). Here, the
steps necessary to achieve a business goal are determined along with the resources,
particpants and the necessary order or sequence. Typically, this is done in an infor-

2.5. Business Process Management Systems 35

mal manner
Nevertheless, the models used at this level are usually still informal models, de-

scribing the inputs, outputs and the result of the processes. These processes help an
organization to provide the resources and structure necessary to achieve the busi-
ness goals. For example, one can determine the employees necessary, how they are
supposed to be organized, what suppliers are needed and how to ensure necessary
resources are available.

The operational business processes on the other hand describe in detail the pro-
cess steps that are required to match the desired output and result of the business
processes. However, since they lack implementation details, such as detailed task
instructions, guidelines or automation code, they cannot themselves be implemented
in the organization.

This step is accomplished by the implemented business processes. This type of
business processes include all necessary infomation for the organization to execute
the process. By itself, this does not imply automation (executions by machines rather
than human actors) but can include any degree of automation.

The processes of introducing business process management into organizations
can be assisted by software systems. The next section will provide a definition of
such systems and describe how they can assist in the successful introduction and
maintenance of business process management within organizations.

2.5 Business Process Management Systems

Introducing business processes and applying business process management to an or-
ganization can be an involved process due to the complexity of typical organizations.
However, it can be employed by organizations in a purely manual fashion, in which
the people within the organization who are involved in the processes use their in-
stitutional knowledge, training and manual approaches based on paper documents
to implement business process management. While identifying, formalizing, ana-
lyzing and improving business processes in organizations can be done on paper or
through meetings and discussions, for most organizations the complexity of such a
task quickly exceeds any reasonable effort. In order to reduce the effort necessary,
the introduction and maintenance of business process management can be assisted
with software systems. This can start with the use of common office automation
tools such as spreadsheets, word processing or e-mail. However, if a generic and inte-
grated software system is used to assist business process management, the system is
referred to as a business process management system, as defined by Weske in [161]:

A business process management system is a generic software system that
is driven by explicit process representations to coordinate the enactment
of business process.

Note that this definition does not require the business processes themselves to be
automated or even formalized. It merely requires that the systems supports busi-
ness process management through explicit process representation. At this point it

36 Chapter 2. Business Process Management

is useful to make a distinction between models and instances. Models represent the
static nature of an entity type, i.e. the structure and information any entity of the
model’s type contain, while the instances are a concrete occurence of the entity type.
For example, a blueprint for a house represents a model for a house, while a built-up
house is an instance of a house. This pattern is also common in object-oriented pro-
gramming, with classes representing static models and objects representing instances
of the model (see e.g. [109]).

A similar notion applies to business processes. A business process model describes
the entities involved in the process and the general plan to be followed when the
business process is performed. A business process instance on the other hand is a
current performance of a business process in progress working its way to completion
within the organization. In terms of information content, unless the business process
itself changes, the business process model stays consistent and does not need to
be modified. Contrary to this, the business process instance has to be provided
with information relevant to the current performance of the process such as details
about the order like color or information about the customer. Weske defines business
process models and business process instances in [161] as follows:

A business process model consists of a set of activity models and execu-
tion constraints between them. A business process instance represents
a concrete case in the operational business of a company, consisting of
activity instances. Each business process model acts as a blueprint for
a set of business process instances, and each activity model acts as a
blueprint for a set of activity instances.

The creation of new business process instances in a business process management
system is referred to as either an enactment or an execution of the business process or
business process model. After enactment, the business process controls the workflow
instance and ensures the correct performance of the workflow as specified in the
model.

In many cases, after identifying and modelling business processes, part of the im-
provement of the processes is the full or partial automation of the business processes
so that IT systems can assist the enactment and execution of business processes and
thus reduce errors and cost while improving quality. The next section will provide an
introduction to this process and describe how IT systems can assist business process
management and organizations that use it.

2.6 Business Processes and Workflows

Business process, as defined in section 2, describe a set of coordinated activities in
an organization that are aimed at reaching a particular (business) goal or goals.
Once they have been identified, they can be modelled in business process models as
described in section 2.5. However, while business process models describe a sequence
of actions and tasks performed, they do not specify how information is passed or
exactly how the sequence of actions are coordinated.

2.6. Business Processes and Workflows 37

Technically, this can be done in an entirely manual fashion by printing, passing
and mailing business documents and coordinating over communications media like
phone or e-mail. Unfortunately, this puts an additional burden on the employees who
already have increased responsibilities in business process-oriented organizations.
Furthermore, these coordination tasks are often relatively mundane and require no
particular skill, thereby wasting the time and effort of employees who have been
trained with considerable cost and effort in order to implement business process
management.

Many actions and steps in a business process can and often already are auto-
mated, in many cases even before the introduction of business process management.
For example, a step in a business process to weld a car frame can be executed by an
automated assembly system instead of manual labor.

However, it may also be beneficial to support the automation of the execution of
the business process itself as well as the action of passing outputs from one process
step to the next. While it may not be always possible to fully automate an entire
business process, at least parts of it generally lend themselves to automation.

When a business process is partially or fully automated, the result is referred to
as a workflow. A large standards body in the field of workflows is the Workflow Man-
agement Coalition (WfMC), which, along with Weske (see [161]), define workflows
in relation to business processes as follows:

Workflow is the automation of a business process, in whole or in part,
during which documents, information, or tasks are passed from one par-
ticipant to another for action, according to a set of procedural rules.

Workflows are therefore a refinement of the concept of implemented business pro-
cesses (see section 2.4). Instead of simply implementing the business processes,
workflows automate, at the very least partially, the coordination of activities within
a business processes. This means that unlike business processes, workflows necessar-
ily imply the use of IT systems in some fashion and may even encompass the full
automation of a business process.

However, as noted, full automation is not always possible. As a result, conversion
of a real world business process to the IT-based workflow may be incomplete and
the result may not actually represent the full business process which may consists of
additional activity outside the workflow.

The terms used to describe aspects of business processes have equivalents in
terms of workflows with the narrower scope of the technically implemented and au-
tomated parts. Since workflows necessitate IT support, it follows that an equivalent
to business process management systems must exist for workflows. These integrated
systems for creating, managing and enacting workflows are refered to as workflow
management systems (WfMS), which are defined by Weske in [161] as follows:

A workflow management system is a software system that defines, cre-
ates, and manages the execution of workflows through the use of software,
running on one or more workflow engines, which is able to interpret the

38 Chapter 2. Business Process Management

Figure 2.4: Business processes are based on the real world organization. If a business
process model is automated, it becomes a workflow model (from [80] based on [100])

process definition, interact with workflow participants, and, where re-
quired, invoked the use of IT tools and applications.

This means that once a business process model exists, it can be converted into a
workflow model by adding the necessary information for an automated workflow
engine to interpret it once it has become a workflow instance (see 2.4) or case,
according to van der Aalst and van Hee in [1]. According to them, a case or workflow
instance differentiates from the workflow model in that they carry a particular state
during their lifetime, consisting of the following three elements:

• Case attributes are the part of the workflow state which allows the workflow
engine to determine whether a certain task should be skipped or executed.
During execution of the case, the state of case attributes may change.

• Conditions specify which tasks have finished their execution and which are still
in line to be performed as part of the workflow. They defined the state that is
necessary for a task to be carried out.

• Content is business information relevant to the case such as files, documents,
databases and archives. In many cases, the content is not contained in the
workflow management system but provided by an external source.

While the definition by Weske does not specify how exactly a workflow instance is
interpreted by workflow engines, the most common approaches for workflow models

2.6. Business Processes and Workflows 39

are based on tasks, which represent steps in both the workflow and the underlying
business process which need to be performed for the workflow to be successfully
executed.

Tasks represent a unit of labor which cannot be further deconstructed into smaller
pieces and must be fully performed to be considered complete. This means that tasks
within a workflow are atomic, meaning they are either performed in full, or, in case
of failures, the changes done by the task up to that point have to be reverted to the
original state (rollback).

Tasks themselves do not always require automation. The definition only requires
that the coordination or execution order of the steps is performed by a workflow
management system. In fact, van der Aalst and van Hee offer three distinct categories
of tasks in [1], only one of which is fully automated:

• Manual tasks are performed by a person such as an employee or a group of
people without the use of software support. Typically, these are tasks that are
not easily automated because they require some sort of physical interaction, for
example physically fastening a screw or signing a paper document with a pen.
In this case, the workflow management system is reduced to simply providing
a prompt to the participant or participants to perform the action and confirm
the execution.

• Semi-automatic tasks are performed by a person or a group of people who are
supported by a software application or a similar piece of software to perform
the task. This can involve creating or modifying a document with a word
processor or filling in a sales form with a customized application. Here, the
workflow management system can not only prompt participants to perform the
action but also execute supporting applications as necessary, provide the data
for the application and pass the results to the next part of the workflow after
the task has been performed.

• Automatic tasks are units of labor that can be performed without any human
interaction at all. Depending on the context, this can mean different things:
For example, the task may invoke an automated service implemented in soft-
ware such as a task which accesses a database. Alternatively, a task may also
involve physical labor if the labor is actually performed by a robot or some
other piece of automated production machinery that can commonly be found
in assembly lines. This also means that a task can be performed simply by
using information made available by the workflow management system or ex-
ternal, IT-based systems. A human is not required to provide or interpret
additional information.

Once a task is in execution by the workflow engine, the task, which is a workflow
model element, needs to be instantiated with the information available in the case or
workflow instance that is relevant to the job that the actual labor of the task requires.
The resulting instantiated task is called a work item, and represents a concrete action
or actions that need to be performed in order to advance the workflow instance.

40 Chapter 2. Business Process Management

However, the work item is still a passive object, representing a work description.
In order for it to be performed, some entity, for example a human in the case of
a manual and semi-automatic task, alternatively a software system or industrial
robot in case an automatic task, has to receive the work item and begin performing
the necessary actions. Once the work item has been assigned to such a workflow
participant, the work item is regarded as an activity while the work is in progress.

2.7 Business Process Management and Workflow Man-
agement

While business processes represent the real world processes as they appear in or-
ganizations, workflows represent a subset of such business processes that have been
automated using IT systems. As a result, workflows often only represent a subset of
the whole business processes. Consequently, the approach for business process man-
agement and workflow management overlap but differ in portions where the wider
view of business process management comes into play.

Figure 2.5: Since workflow management focuses on the execution part, business
process management differs by including a feedback from diagnosing existing business
processes and comparing them to strategic planning (from [155])

Practical business process management is often represented in the form of a life-
cycle that can be followed to initially design new or model existing business processes.
Since the actual requirements for such a lifecycle differ in detail, many variants exist.
For example, a more workflow-centric cycle may emphasize the technical aspects; a
simple example of such a lifecycle is shown in Figure 2.5, which was used by van
der Aalst in [155] to demonstrate the difference between workflow management and
business process management. It divides the lifecycle into four phases. First, the
process design where the business process or workflow is modeled in an appropriate
business process or workflow modeling language.

Second is the system configuration, where the business environment is prepared
for enactment of the business process or workflow. For example, in the case of work-
flow management, this includes the set up of the preparation and configuration of
relevant IT systems, configuration of the workflow management system and includ-

2.7. Business Process Management and Workflow
Management 41

ing the workflow model in the system. In business process management, this can
also include other aspects such as organization of resources and labor.

The third phase encompasses the process enactment. Here, one or more business
process instances or workflow instances are created and then performed as designed.
For workflows, this includes the execution of the workflow instance on the workflow
management system.

The final phase of the lifecycle presented by van der Aalst is diagnosis. Here
information gathered during enactment of the business process or workflow is col-
lated, then analyzed. The goal of this phase is to use the experiences gained from the
enactment and performance of a model under real circumstances in order to improve
the design of a business process or workflow. In particular, the diagnosis is used
to evaluate the business process with regard to the organization’s business strategy.
If the business process results deviate from the goals of the strategy, the issue can
be identified with the information processes used during the diagnosis phase which
allows the business process model to be adapted to be more closely aligned with the
goals of organizations.

Since the diagnosis phase cannot be automated because it requires evaluation by
human actors, it is the main differentiating factor between business process man-
agement and workflow management. While a workflow management system can
certainly gather information which is later used in a diagnosis phase, it cannot pro-
vide an evaluation of such information beyond fairly simple threshold and assertion
comparisons.

Implementation

BPM
Lifecycle

Design Execution

MonitoringAnalysis

Figure 2.6: Since workflow management focuses on the execution part, business
process management differs by including a feedback from diagnosing existing business
processes and comparing them to strategic planning (from [155])

Long-running autonomous processes have both long execution times and are often
used only once before being evaluated. Therefore, the importance of the diagnosis
phase of the lifecycle is generally reduced and used much more rarely with regard to
such process types when compared to production workflows. Nevertheless, some di-
agnosis is still helpful and necessary, both to diagnose potential problems in advance

42 Chapter 2. Business Process Management

by enacting and simulating test instances as well as a source for gaining organiza-
tional knowledge, even if the model is not reused exactly.

Based on this, the approach presented in this work emphasizes the workflow
aspects of business process management while still providing some aspects of the di-
agnosis phase. Therefore, a more technically-centered and workflow-oriented lifecycle
model is used as shown in Figure 2.6 and further explained in [87].

Here, the lifecycle is partitioned in five phases. The first phase is the design of
a business process model. This phase emphasizes the strategic planning aspects of
the process design in order to ensure a strong cohesion with the business goals. The
resulting model is not executable but expresses the business goals of the organization
as close as possible. This phase requires an business process or workflow modeling
language which is able to describe the process behavior while maintaining a strong
cohesion with strategic planning.

The second phase is the implementation of the workflow model. This phase
starts with the business process model gained in the design phase and enhances the
model with additional runtime information with the goal of producing an executable
workflow model. This enhancement should be performed in a machine-readable
format in order to allow the resulting workflow to be executable. In order to support
a workflow designer in creating such workflows, editing tools are required that are
capable of reading and writing in that format.

The execution phase of the lifecycle shown in Figure 2.6 is the most technically
challenging. It involves using the workflow model generated by the editing tools
and enacting workflow instances based on that model. This is usually accomplished
through utilization of a workflow engine which interprets the model and runtime
data and performs the execution. However, a workflow engine is insufficient, since
interactions with users and automated services is required. These tasks are usually
accomplished by various parts of a workflow management system which includes the
workflow engine as a crucial component.

Another key aspect of workflow management systems is the monitoring, which
is represented as the fourth phase in the lifecycle. During enactment of a workflow
instance various information can be gathered about the workflow behavior such as
start and duration of tasks, enactment of sub-workflows and interactions of workflow
participants with the system. The monitoring gathers such information and stores
them for later use.

Finally, the analysis phase uses the information gathered from workflow instances
to help workflow designers to evaluate workflow models. This can include both gath-
ering information during a real world enactment of a workflow as well as enacting
workflow instances in simulated environments to gauge their behavior. The experi-
ences gained during this phase can then be used in the design process to improve the
workflow models as well as evaluating how well the result match an organization’s
strategic goals.

The research goals regarding improved support for long-running autonomous pro-
cess are not all affected by every phase of the BPM lifecycle used here. As would

2.7. Business Process Management and Workflow
Management 43

Design Implementation Execution Monitoring Analysis

Strategic-operational Cohesion X X

Workflow Model Agility X X X X

Balance Global Control/Local Autonomy X X X

Organizational Agility X X

System Robustness X X

Workflow Instance Agility X X

Table 2.1: Now all phases of the BPM lifecycle affect the research goals for additional
support of long-running autonomous processes

be expected and shown in Table 2.1, the BPM lifecycle as a whole affects all of the
research goals, but each phase affect only some of them.

The design phase emphasizes strategic planning and does not yet concern it-
self with execution. As a result, the most critical research goals for this phase are
strategic-operational cohesion to form a strong connection with the business strategy
and a workflow language which will allow inclusion of predictable changes at runtime
to be easily included in the model.

The output from this phase is only a business process model tied to the strategic
goals of the organization. The execution of a later workflow model is important
in so far as the generated business process model should not impede a later effort
to generate a workflow model. Consequently, the workflow model agility aspect is
already relevant in this phase. Balance of global control and local autonomy is
partially affect by this phase since the resulting model must retain the necessary
amount of autonomy for the workflow participants. Since the execution aspects
are not part of this phase, organizational agility, system robustness and workflow
instance agility are not relevant in this phase.

During the implementation phase, process models resulting from the design phase
are enriched to mold them into workflow models by preparing them with additional
information for enactment. Strategic-operational cohesion has been accomplished
by the previous phase and the current phase must simply maintain that cohesion so
that the resulting workflow model does not lose its connection to strategic planning.

Additionally, workflow model agility remains important as the process model
is prepared for execution and detailed runtime instructions are added which include
contingency options for predictable changes in the business environment. The imple-
mentation phase also offers the opportunity to include possibilities for later workflow
instance agility.

The execution phase of the BPM lifecycle is affects most of the research goals.
While the strategic-operational cohesion is supported by the generated workflow
model at that point and does not require explicit support by the runtime system, all
other research goals need support from the workflow management system during the
execution phase in order to be achievable. For example, the workflow engine must

44 Chapter 2. Business Process Management

be able to execute the workflow model resulting from the previous two phases. In
particular, the contingencies included in the workflow model for handling predictable
changes in the business environment must be invoked by the workflow engine when-
ever necessary. Adapting workflow instances can only be adapted for unpredicable
changes in the business environment during runtime, requiring this task to be per-
formed during the execution phase.

Balancing global control and local autonomy becomes a practical issue at this
point when the autonomous workflow participants begin to interact with the workflow
management system during the execution phase. In addition, organizational agility
becomes important since the system must allow parts of the organization to manage
and administer parts of the system independently from one another. Finally, due to
the long execution times of the processes, the robustness of the system is key during
this phase.

For the monitoring aspect of the BPM lifecycle, two research goals are primarily
affected. First, the monitoring must be able to adapt to different organizational
models by allowing each part of the organization to perform independent monitoring.
In addition, since real world enactments of workflow should also be monitored during
their long execution times, system robustness is once again key during this phase.

Finally, the aspects of workflow model agility and strategic-operational cohesion
are again elevated in importance during the analysis phase. The analysis must take
the flexible nature of the workflows into account and present the monitored data in a
way that allows workflow designers to reconcile the flexible execution path with the
designed workflow model. In order to allow a comparison with strategic planning,
the strategic-operational cohesion once again becomes critical at this point. This
means that either the cohesion must be maintained during the whole lifecycle or the
system must be able to restore this connection during this phase.

Figure 2.7: The different phases of the BPM lifecycle are affected by the research
goals to varying degrees, the primary influence being shown here. Solutions have to
be available to address the research goals and represent the whole lifecycle.

The primary influence of the research goals on the lifecycle phases are shown in
Figure 2.7. Since business process management encompasses the whole lifecycle, a
solution for every phase has to be available that take the research goals into account

2.8. Service-oriented Architecture (SOA) 45

to adequately support long-running autonomous business processes.
In order for both business process models and workflow models to be designed

and implemented, a language has to be defined to express all parts of the workflow. A
large number of such languages are available. The next chapter will present a num-
ber of options in the area of business process and workflow languages, evaluating
them with regard to the research goals of this work. Following that, a new work-
flow language specifically aimed at long-running autonomous business processes will
be presented which also incorporates one of the more common workflow languages
available.

2.8 Service-oriented Architecture (SOA)

The service-oriented architecture approach (SOA, see e.g. [44], [142], [43], [42] and
[97]) is a design pattern for developing applications, especially business applications,
on a large and distributed scale in complex and heterogeneous environments. It
represents a relatively recent approach for both programming-in-the-large (see [38])
and the development of distributed software systems.

Since many modern business process management systems require the integra-
tion of many divergent systems from potentially differing organizations or parts of
organizations, SOA is often used in the implementation of business applications re-
lated to business processes and is therefore often considered to include concepts and
approaches from business process management.

SOA represents a design pattern for developing large-scale applications and is sup-
ported by a large number of software development companies, vendors and software
engineering researchers. This means that it encompasses a large set of overlapping
and sometimes competing concepts and technologies which can be used to develop
SOA applications. This section will therefore give a brief overview of the basic con-
cepts and ideas as well as some of the more common techniques to develop SOA
applications.

The core concept of SOA is the idea of a service, which represents an encapsulated
piece of code capable of performing activities by implementing service operations and
offering them in a defined manner to the rest of the system. This allows the imple-
mentation of applications and further services by interacting with already existing
services to implement the desired functionality.

In order to employ a service-oriented architecture, certain functionality must be
provided by technologies to enable this approach. The functionalities are often sum-
marized using the SOA triangle shown in Figure 2.8. Services are used by some sort
of service used, denoted as ”service requester” in the figure. This service requester
can be anything that requires a particular service such as an application or work-
flow but can also be another service which uses the requested service as part of its
functionality.

Before a particular service can be used, it has to be found. In a SOA approach,
this is accomplished by a service broker which has the means of locating services,

46 Chapter 2. Business Process Management

Figure 2.8: The SOA triangle illustrates the functionality required for SOA ap-
proaches (from [110])

usually by maintaining a searchable set of available services. This set of services is
compiled with the help of the service providers offering services by publishing and
therefore offering their services through the service broker.

Finding services that fit the requirements of the service requester often is the most
difficult part in service-oriented architectures. This is due to multiple factors: First,
the requested service must match syntactically with the service requester and cannot
require the provisioning of more information than the service requester expects to
provide or offer a different type of response from that which the service requester
requires. This aspect can often be reasonably be assured through an adequate typing
system.

Second, a service must fulfill the semantic expectations of the service requester.
For example, both an addition and a substraction service may require two integer
values and return a single one, however, if the service requester requires one and binds
the other, the results will not be as expected. Defining such semantic descriptions
tends to be notoriously difficult due to lack of standardization and importance of
details, raising question whether the addition service supports negative numbers as
well or how overflows are wrapped or alternatively if they are clamped.

Finally, once an adequate service is found, it is bound to the service requester
which can now issue service requests to the bound service. Service bindings can
be both bound permanently, rebound only if the current service is lost or bound
dynamically with each use.

Services in an SOA environment are ideally designed to maximize reuse and
minimize the necessity of changing the service implementations in favor of combining
and changing the way the services are used. Services generally implement larger-scale
operations while still being universal enough to be applied in a variety of contexts.
The services are loosely-coupled and they abstract from the underlying operation
system and other technical details of the system used to implement them.

In contrast to traditional software libraries, services do not offer a language-
specific interface. Instead, it defines the protocol and functionality of the service.
Depending on the details of the technologies used, this allows the transcendence of

2.8. Service-oriented Architecture (SOA) 47

language and system barriers.
The specific technologies that can be used to implement an SOA application are

not specified. Often established technologies from distributed system development
are used to specify, implement, discover and combine services when an SOA ap-
proach is used to develop applications. A prominent approach used to specify and
communicate with SOA services is the specification as web services, but alternatives
are available including remote function call/method invocation approaches along the
lines of Java RMI (see [76]) and CORBA (see [119]).

However, approaches based on web services are often the more popular ones
due to the widespread support and universal support across systems, middleware
and programming languages. Many of the earlier approaches used the Web Service
Description Language (WSDL, see [167]) as the service description language, the
Simple Object Access Protocol (SOAP, see [63]) as the communication protocol and
Universal Description Discovery and Integration (UDDI, see [10]) registries as service
brokers.

More recent approaches often favor the use of the Representational State Transfer
(REST, see e.g. [44]) approach to web services, which employ the Hypertext Transfer
Protocol (HTTP, see [45]) as the communication protocol, avoiding the considerable
overhead of the earlier WSDL and SOAP-based approaches and allows for easier
integration with standardized web server environments.

In the context of business process management, SOA approaches are often used to
encapsulate business services provided by the competency centers of process-oriented
organization (see section 2.1.2), making them available to the organization at large
as well as potentially interested outside parties. It also allows the automated coor-
dination of such services using workflows.

The next chapter will introduce available business process modeling languages.
The chapter will evaluate their viability for modeling long-running autonomous pro-
cesses based on the research goals defined in section 2.7 and general criteria that
facilitate a business process-oriented approach.

48 Chapter 2. Business Process Management

Chapter 3

Business Process Modeling
Languages

Since a major aspect of business process management involves the identification of
business processes in organizations as well as defining their properties, languages are
required to build models of business processes once they have been identified. A
modeling language can also offer extension points for partial automation of business
processes in the form of workflows.

Any business process modeling language which also aims to support workflows
struggles with the somewhat divergent demands of two categories of users (see [24]):
The business user, who tends to provide expertise from a business perspective and the
context of the business process within the organization and the technical user who is
versed in the knowledge of IT systems and software. This means that a major aspect
of the art of translating business processes into workflow centers around bridging
this gap of understanding between these two group of users.

As a result business process modeling languages can be divided into three cat-
egories (see [102]) which address this dichotomy in different ways: First, informal
modeling languages allow the representation of the business process in informal terms
which explain the process to another human being but the semantics of which are
inaccessible for a machine. In addition, details necessary for an automated execution
is often omitted in order to reduce complexity.

The simplest representation of this category of modeling language is natural lan-
guage, which can be used to simply describe a business process in written form,
however, since natural language often fails to quickly provide an overview of a busi-
ness process, languages with higher expressiveness and precision are available in this
category. Since this category of modeling languages lacks a formal definition of the
semantics, it cannot be automated and thus used to model workflows and are only
used to get an overview of a business process as well as a stepping stone on the path
to a workflow model in a different modeling language. The advantage of informal
languages is that they are easily accessible to a technical layperson and thus allow-
ing a wider participation of stakeholders while designing processes in this category
of modeling language.

49

50 Chapter 3. Business Process Modeling Languages

On the other side of the scale are formal business process and workflow languages.
In this category of modeling languages, all modeling elements are assigned a strict
formal semantic definition. As a result, once a business process is fully modeled using
a formal business process modeling language, it becomes executable on a suitable
IT-based system and therefore can be instantiated as a workflow instance. Formal
modeling languages require model designers to include considerable detail in the
model in order to support execution of the model. Furthermore, a formal language
can be restrictive in how its language elements can be used to ensure that a valid
execution semantic exists for the model. As a result, formal modeling languages are
generally less accessible than informal ones to a layperson who is not well-versed in
the technical details and semantics of that language and lacks requisite expertise to
add necessary execution details.

The final category of business process modeling language are semi-formal mod-
eling languages. This category of languages attempts to strike a middle ground
between formal and informal approaches with the aim of being accessible to techni-
cal laypersons as well as allowing some form of automation at a later stage. As a
result, while many elements of such languages have a formal runtime semantic, others
do not and are merely used in an informal context. This allows the creation of both
informal overviews of business processes as well as the creation of execution-ready
workflows.

The semi-formal approach also offers a more seamless path from the first assess-
ment of a business process to a formally designed workflow: Directly implementing
a business process in a formal language may overwhelm a designer by forcing him to
formalize small execution details from the start. On the other hand, first assessing a
business process in an informal modeling language and then then translating it into
a formal workflow model involves a break in the language used to model the business
process, which, since the step is manual, risks the loss of information in the transfer
and increases the chance of introducing errors.

Semi-formal languages on the other hand allow for an informal rough draft of
the business process model to be created which can then be successively enhanced
until a fully-formalized model is achieved. The disadvantage of this approach is
that it necessitates a compromise between the two extremes. On the one hand, the
execution environment does not support all language features and elements, which
can lead to a workflow designer finding surprising failures while executing a workflow
instance based on the workflow model. On the other hand, even the partial executable
semantics of a semi-formal language puts restrictions on how that language can be
employed which makes it harder for a layperson to use.

An alternative way of differentiating business process modeling languages is based
on the representation of the language. A modeling language can use a textual repre-
sentation to express the details of a given business process. Languages with textual
representations are relatively compact and lend themselves to modification using
only standard text editors, though specialized editors with specific language support
are sometimes available to assist a model designer.

3.1. Task-based Business Process and Workflow Modeling
Languages 51

However, the more common approach is a graphical language, in which most
of the major language elements have a graphical representation. The advantage of
graphical languages over textual ones is the facility with which they can offer a quick
overview of the business process and are often considered to be more intuitive for
laypeople.

These two sets of categories can be used to categorize business process modeling
languages. For example, using natural language to describe a particular business
process of an organization represents the use of natural language as an informal and
textual business process modeling language.

In chapter 1 and chapter 2 it was noted that many aspects of business process
management primarily address production and administrative business processes. As
a major aspect of business process management, process modeling languages are no
exception in this regard: Mainstream business process and workflow modeling lan-
guages usually center around a task-based approach, where the business process is
defined by a sequence of tasks and variants are usually implemented using a num-
ber of splitting elements to allow for different sequences to be taken depending on
the process state. These types of modeling language form the group of task-based
modeling languages and will be address in the first part of this chapter.

However, while the group of task-based modeling languages are well-suited for
the aforementioned group of business processes, they are often not well-suited for a
number of business processes including collaborative business processes (and long-
running autonomous business processes in particular, see section 1.2), as well as
more exotic examples of both production and administrative processes. As a result,
a number of languages has been developed to address these types of business pro-
cesses. They will be introduced in the second part of this chapter, along with the
goal-oriented approach developed to support the long-running autonomous processes
which this work aims to address.

3.1 Task-based Business Process andWorkflowModeling
Languages

Task-based business process and workflow modeling languages represent the most
common approach to modeling both workflows and business processes. The approach
is based on identifying small and uninterruptible (atomic) units of work (tasks) of a
given business process and arranging them in a sequence describing the order in which
the tasks must be performed for the business process to be successfully completed.

Since not every instance of a business process involves the same tasks (process
variants), task-based languages offer modeling elements for branching the flow of
execution in some form, the most common being a choice between two or more
sequences of tasks, one of which will be chosen in any given business process instance.
Another frequently included language element selects two or more sequence flows
following the element which are then executed concurrently.

For many business processes, this approach is fairly intuitive since it resembles

52 Chapter 3. Business Process Modeling Languages

the use of informal methods of process planning: A common approach for planning
a complex project is often informally accomplish by compiling a „To-Do List” which
simply lists step-by-step instructions explaining how the project can ultimately be
finished. As a result, these lists are a primitive form of this approach but lack
the more complex elements which allow parallelism and variants (though it can be
accomplished with this approach in a limited fashion by making some steps optional).

This section will give an overview of task-based business process and workflow
modeling languages and as well as categorizing them in terms of both formality and
representation.

3.2 Flowcharts

An early example of a graphical modeling language is the flowchart. Introduced
by Gilbreth (see [58]), they were later standardized by the American Society of
Mechanical Engineers (ASME, see [6]). Since they were one of the first examples
of a graphical modeling languages for business processes, they were quickly adopted
to model various industrial processes. Out of the flowchart, a number of derivative
modeling languages and language extensions have been developed.

Depending on the exact variant of the language used, a large number of language
elements are available; however, common elements include a rectangular shape for
units of labor that are to be performed which are often referred to as an activity.
A rhombus shape represents a decision, where the user of the chart must choose
between one of the outgoing paths available depending on the context.

Other common symbols include a parallelogram for inputs and outputs, a hex-
agram for preparatory work and a downward-pointing pentagram as a reference to
another page for multi-page flowcharts. Flowchart symbols are connected using ar-
rows or flowlines, which the user of the flowchart follows while performing the process
described by the chart.

Figure 3.1 shows a simple process modeled using a flowchart. The process de-
scribes how to troubleshoot a non-functioning lamp. The user begins by starting
at the top where the issue is described and is then met with the first decision in
which the user verifies if the lamp is plugged in. If the user answers the decision
with „No”, the next activity describes how to resolve the issue (by plugging in the
lamp), otherwise the user proceeds to the next question. Eventually the user will
reach one of the final activity nodes describing how to proceed after the problem has
been identified by the user using the flowchart.

The instructions on the elements are written in natural language and therefore
lack the necessary formality for IT-based execution. This is unsurprising considering
that flowcharts were designed to assist humans in formulating processes for other
humans and IT systems capable of performing workflow execution in the modern
sense which were not available at the time they were proposed.

However, flowcharts distinguish themselves from pure natural language descrip-
tions by offering an intuitive graphical representation of business processes and there-

3.3. Workflow Languages based on Petri-nets 53

Figure 3.1: Example of a flowchart illustrating the troubleshooting of a lamp (from
[126])

fore are an example of an informal and graphical business process modeling language.
Furthermore, due to their popularity they often serve as a starting point or inspi-
ration for more formalized task-based business process and workflow modeling lan-
guages.

3.3 Workflow Languages based on Petri-nets

Petri nets as a modeling language precede the idea of business process modeling in
the modern sense. Originally proposed by Petri as a language for modeling chemical
processes, it was found to be useful for modeling distributed and otherwise concurrent
systems (see [137]). The model consists both of a graphical representation and a
rigorous mathematical definition of the semantics.

The basic petri net graph or, in the sense of business processes, model consists
of a very limited number of elements, consisting of the following three-tuple:

(S, T,W)

Element S represents a finite set of places and element T being a finite set of
transitions. The sets S and T are disjunct and thus places are never transitions
and transitions are never places. W represents a multiset of arcs which assigns a
multiplicity to each arc as follows:

54 Chapter 3. Business Process Modeling Languages

W : (S × T) ∪ (T × S)→ N

This multiset allows arcs to be defined between places and transitions and assigns
them a multiplicity, however, arcs between two places or two transitions are not
included in the multiset and are, as a result, not part of the language definition.

Compared to a petri net graph, a petri net or, in terms of business processes, a
petri net instance, is extended to a four-tuple:

(S, T,W,M0)

M0 designates the initial marking of places in the graph. Once the initial mark-
ings are defined, the petri net is ready for execution. The execution semantics are
as follows:

• Given a marking M , a transition t, when firing, consumes the marking from
its input places s in the multiplicity defined by W (s, t) and conversely gener-
ates markings in the output places s as in the multiplicity defined by W (t, s),
producing marking M

′ .

• If enough markings are available on the input places of a transition for it to
be able to perform the consumption operation, the transition is considered
enabled, meaning it may fire. Transitions which are not enabled cannot fire.
If multiple transitions are enabled, they may fire in an arbitrary order. Since
firing a transition may disable previously enabled transitions, the execution is
non-deterministic.

If the arc multiplicity is always one, as some petri net approaches mandate, there
has to be at least one marking on each of the input places for the transition to be
enabled and ready to fire.

Figure 3.2: An example of a petri net transition firing: Due to places P4, P6 and
P8 being marked, transition T3 may fire, after it does, the places P5, P7 and P9 are
marked (from [59])

As mentioned, petri nets also have a graphical representation as shown in Figure
3.2. The places of the petri net are represented by circles, while the transitions
are drawn as rectangles. The arcs of the petri net are shown as directed arrows.
Places are often marked by drawing dots in the places that are marked, but other
representations are possible such as a counter.

3.4. Yet Another Workflow Language (YAWL) 55

The figure shows a transition firing as an example. The transition ”t3” is enabled
because its input places ”P4”, ”P6” and ”P8” are marked (contain a token) and the
transition is therefore ready to fire. The right side represents the petri net after the
transition has fired. The marking on the input places have been consumed and new
markings are generated on the output places ”P5”, ”P7” and ”P9”.

Petri nets are well-researched and are fairly intuitive especially in terms of mod-
eling concurrency, since each of the transitions are considered independently by the
execution semantic. They are based on a solid mathematical framework and allow
the verification of certain properties. However, basic petri nets are fairly simple
and are, in fact, not Turing-complete. In order to address this, numerous variation
and extensions of this basic model have been defined which maintain the verifiable
properties of a basic petri net to various extents, trading verifiability for computa-
tional power and syntactic enhancement in varying degrees. The following examples
include common enhancements to the basic petri nets, which are often called high
order petri nets:

• The addition of inhibition arcs allows the attachment of conditions to transi-
tions. With the addition of inhibition arcs, petri nets become Turing-complete.

• Colored petri nets allow the distinction between marks by assigning a value to
mark or token on places (see [92]), which can tested using guard expressions.

• Prioritized petri nets assign a priority to transition. This approach imposes a
well-defined execution order (see [12]).

• Nets-within-nets (see [151]) allows the inclusion of petri nets as a token in other
petri nets and reference nets (see [98]). This allows the inclusion of objects for
the object-oriented programming paradigm.

Reference nets in particular have been successfully used to implement not only work-
flow models but also a workflow management system (see [153]). As a result, certain
petri nets lend themselves to be used for workflow modeling, representing a graphical
workflow language. The rigorously defined semantic results in it being considered
among the formal workflow languages.

However, not every type of petri net is suitable as a workflow modeling language,
in particular, more basic variants force designers towards implementing elements
purely for technical reasons and thus fail to concentrate on the operational and
business requirements of the workflow. As a result, a workflow language based on
petri nets has been developed which addresses the particular demands of workflow
modeling, which will be presented in the next part of this chapter.

3.4 Yet Another Workflow Language (YAWL)

Since many types of petri nets already appear to support workflows to some degree
and also offer both a graphical representation and rigorous semantics, many attempts
have been made to use them for workflow modeling (see [152], [153] and [1]). Based

56 Chapter 3. Business Process Modeling Languages

on the experience gained by these attempts, a specific workflow language based on
the concepts and advantages of petri nets called Yet Another Workflow Language
(YAWL, see [154]) was developed.

Figure 3.3: Symbols used in YAWL workflows (from [154])

Like the petri net-based approaches, YAWL is a task-based workflow language
with a graphical representation. Figure 3.3 shows the symbols available in YAWL.
The most basic symbol or element is the atomic task, which carries semantics similar
to the tasks in other task-based business process and workflow languages, represent-
ing a piece of labor executed as a single unit without interruption.

A special case are the composite tasks, which are used as tasks in a YAWL
workflow but are not atomic and are represented by another YAWL model, allowing
hierarchical modeling of workflows similar to the nets-in-nets approach (see [153]).

Splits and forks in processes are accomplished using the respective split and join
elements. The process flow is split using a split symbol and can later optionally
be joined using the join symbol of the same type. Three types of splits/joins are
available: The XOR-split is used for differentiating different cases and only one
outgoing path is chosen during execution. In contrast, the and-split will cause the
execution of all outgoing paths concurrently. Finally, the OR-split will result in some
but not necessarily all outgoing paths.

3.4. Yet Another Workflow Language (YAWL) 57

Like petri nets, YAWL uses markers or tokens to track the execution flow. This
means that a join after a split is not always necessary but may result in multiple
tokens being used in the flow in cases of XOR- and OR-splits. It also allows YAWL
to be used based on data flow instead of a control flow pattern, where the tasks being
executed are decided based on the data available.

Figure 3.4: A composite task modeled in YAWL (Pattern 7 from [154])

Figure 3.4 shows an example of a YAWL model used to represent the internal
structure of a composite task. It starts with an input condition defining the inputs
for the composite task. It continues with an OR-split, in which one or more of the
following paths are chosen depending on the runtime state.

This means that of the set of tasks following each of the paths, a certain subset
which can but does not necessarily include the complelet set are executed, resulting
in at least a flight, a hotel or a car being booked but allowing up to and including all
three bookings to be performed. The condition following each of the tasks ensures
that the pay operation is only executed once when all started tasks due to the OR-
split having been executed.

An alternative pattern is based on a single condition used by all three paths,
resulting in the pay operation being performed once for each path chosen by the
OR-split (Pattern 8, see [154]). This may be useful if the payment is separate for
each of the service providers for the flight, hotel and car and therefore need to be
processed separately.

Since YAWL was derived from petri nets, it exhibits similar properties as a work-
flow language but are syntactically more suited for business processes and workflows.
Since it is executable, it represents a formal language and it includes a graphical rep-
resentation for modeling the workflows. YAWL heavily emphasizes sets of modeling
patterns which are documented in detail by van der Aalst and ter Hofstede in [154],
with which various common tasks can be accomplished.

As a language, it is strongly task-centric, though it allows a degree of data flow-
based modeling, for which additional patterns are also available.

58 Chapter 3. Business Process Modeling Languages

3.5 Business Process Execution Language (BPEL)

The business process execution language (BPEL) or Web Services Business Process
Execution Language (WS-BPEL) is standardized by the Organization for the Ad-
vancement of Structured Information Standards (OASIS) as part of their larger set of
standards centering on web services. It is based on earlier works of IBM by Leymann
with the Web Services Flow Language (WSFL, see [99]) and a competing approach
called XLANG (see [147]) by Thatte working for Microsoft. Both approaches offered
a language for modeling workflow based on web services defined with the Web Service
Definition Language (WSDL, see [167]).

The language uses an representation based on the Extensible Markup Language
(XML, see [166]) and does not offer a graphical representation. In fact, since one of
the goals of the language was a unification of the approach of multiple vendors to
allow the interchange of executable workflow models, a specific graphical represen-
tation was explicitly excluded as a design goal.

The key objective of BPEL is to provide a platform for workflow and therefore is
meant to be executable. The tasks as modeled in other business process and work-
flow languages are represented by service calls onto previously defined web services.
Since web services represent fairly technical interfaces, explicit extensions are avail-
able in the form of the BPEL4People (see [78]) and the WS-HumanTask (see [79])
specifications.

Figure 3.5: Example of a simple „Hello World” BPEL workflow (from [114])

Figure 3.5 shows an example of a simple „Hello World” example of a BPEL
workflow. Web services that can be invoked as part of the workflow are defines as
partner links. In this case, a single partner link defining a „printService” is included
in the model of the workflow. State can be included in the workflow as variables, as

3.6. Event-driven Process Chains (EPC) 59

shown in the „hello_world” variable in the example, including an assignment of the
variable in the assign section of the model.

Web services are invoked using the invoke tag. In case of the example, the
„printService” is invoked using the „hello_world” variable as input that is passed to
the service. Branching, which is not shown in this example, can be accomplished
using if-else-statements. In addition to these, switch-statements for defining multiple
branches are available. Both types of branching uses a special condition tag to define
the condition for the branching operation.

As the name implies, the language is meant to be used to defined executable
workflows. It also explicitly lacks a graphical representation, which means that it
is a formal and textual workflow modeling language. It is centered around its use
in the context of WSDL web services, which are used as entry points for workflow
tasks. While it is possible to use the language directly to design workflows, it is often
used in combination with a graphical language (for example, see section 3.7) which
is later translated into an equivalent BPEL workflow for execution (see e.g. [124]).
As a result, BPEL often serves as a standardized execution language for workflow
engines rather than a modeling language.

3.6 Event-driven Process Chains (EPC)

Event-drive Process Chains (EPC) is a business process and workflow language devel-
oped as a research project of SAP AG and the University of Saarland, Germany (see
[95], [67] and [141]). EPCs are based on concepts derived from stochastic network
as well as petri nets (see section 3.3).

While the basic EPC language has been extended into what is known as the
extended EPC (eEPC) notation, the core still revolves primarily around the concept
of events and functions: Events are considered to be passive, meaning they are only
descriptions of state and do not perform an action within the workflow. They provide
the preconditions in which a function or process works.

The functions on the other hand are the active parts of a process which details
actions which should be taken and represents the ”tasks” in terms of a task-based
approach. The elements are connected using control flow edges, with information
flow edges providing the option of modeling information sources.

Branching is accomplished with branch/merge elements and parallel forks are
accomplished using fork/join elements. In addition, an OR element is available for
allowing partial forks, similar to the YAWL (see section 3.4) and BPMN (see section
3.7) or-type forks.

Figure 3.6 shows a simple EPC-based business process model. The model starts
with a function that checks the incoming order. This is followed by a branch element
which offers two options for events in the next step, one for orders below 5000 Euro
and one for orders meeting or exceeding that value. This is followed by a message
element as well as a function in which the order is processed directly or a signature
from a supervisor is acquired.

60 Chapter 3. Business Process Modeling Languages

Figure 3.6: Example of a simple EPC process model (from [141])

3.7 Business Process Model and Notation (BPMN)

The Business Process Model and Notation (BPMN), originally called Business Pro-
cess Modeling Notation, is a popular example of a graphical business process and
workflow modeling language. It was developed by the Business Process Manage-
ment Initiative (BPMI), which was later absorbed by the Object Management Group
(OMG). Since BPMN will be used as part of the solution for modeling long-running
autonomous processes, it will be covered here in detail. The modeling language is
part of the category of semi-formal languages, which means it aims to cover both
the modeling of informal and therefore non-executable models for documentation
purposes, as well as the formal specification of executable workflows.

As a result of the semi-formal specification, BPMN offers a large variety of mod-
eling elements, some of which only have weakly or informally defined semantics. In
fact, the early version lacked formal semantics. If used in the context of a workflow
management system, the implementation of the system has to restrict the formal
model to a subset of the available elements and attempt to interpret the informal

3.7. Business Process Model and Notation (BPMN) 61

descriptions as necessary in order to make them available as executable elements
if a reasonable interpretation can be found. The traditional approach to executing
BPMN processes involved the transformation of the BPMN process to a Business
Process Execution Language (BPEL) [118] model, which could then be executed by
a standard BPEL system.

The original version 1.0 was released in 2004, which was superseded under the
auspices of OMG with version 1.1 in 2008 [120]. Changes primarily revolved about
event modeling with the introduction of the concept of catching and throwing events.
Version 1.2 was released the following year, but contained mostly minor editorial
changes.

The current version of BPMN is version 2.0, which was released 2011 and repre-
sents a major update, with another large overhaul of event modeling but also included
updates regarding choreography modeling. In addition, version 2.0 includes partial
formal semantics for execution of some of the elements. These semantics are largely
the result of BPMN being used in a BPEL context and are therefore mostly derived
BPEL execution semantics.

In addition, choreographies can now be modeled using the collaboration part of
the specification. For data exchange, a standardized XML-Format with extension
points has been defined, which alleviates the need for general purpose formats like
XPDL [165]. Since BPMN is also part of the workflow management solution pre-
sented later, the following will give an overview and detailed description of the most
important BPMN elements.

3.7.1 Events

In any business process or workflow, there can be instances when an internal or
external situation causes some action or state change to occur or be triggered that
has relevance to the business goal of the process modeled in BPMN. These situations
can be modeled in BPMN processes as events with varying semantics depending on
the exact event modeled; however, following the theme of BPMN as a semi-formal
modeling notation, not all event types are associated with strongly defined semantics
but are open to interpretation or further specification by the user.

Figure 3.7: Graphical representation of an event shown in [121], the basic form shown
here represents a standard (empty) start event

Events are represented graphically in BPMN as circles as shown in 3.7, with
varying border options and a number of pre-defined contained icons to represent
different types of events. For example, an event with a thin border denotes a start
event. This means that the event models an occurrence that initiates the BPMN

62 Chapter 3. Business Process Modeling Languages

process, such as a purchase order by a customer.

Figure 3.8: Table of event types in BPMN 2.0 as shown in [11]

Events with a border consisting of two thin lines represent intermediate events.
These event types represent events which can occur or be triggered at any point
while the process is running. Finally, processes that end the control flow of a process
are end events and are represented as circles with a thick border.

BPMN also distinguishes between catching and throwing events, which is used to
denote event sources and drains for events. If an event occurs outside of, or some-
where else within the same process, and the process is supposed to react to this
event, it is modeled as a catching event (the event that occurred is “caught” by the
modeled event element, similar to catching exceptions in object-oriented program-
ming languages such as Java [62]). Conversely, throwing events actually trigger the
event itself, such as when a timeout occurs or a message is sent.

3.7. Business Process Model and Notation (BPMN) 63

As a corollary, not all events can be both catching and throwing. For example,
since start events start a new control flow, they cannot be throwing since throwing an
event by itself does not impose a condition for the start of a control flow and throwing
an event immediately after the start of a control flow can be easily modeled by a
throwing intermediate event following the start event.

This becomes even more clear in the case of end events. Since end events termi-
nate the control flow, catching an event at that stage prevents any option of actually
processing the event. As a result, end events are always throwing events.

Events can also contain icons to further specify the type of event, whereas an
event without an icon is considered to be an unspecified empty event. Event type
icons include message events, which denote the sending or reception of a message
by the process. Another common type is the timer event for chronologically-related
events such as delays, timeouts or scheduled triggers. Escalation events are a type
of business exception handling when a process needs to escalate a business decision
to a high level, such as when a management decision is required after a failure of
the common case handling in the process. Conditional events denote a change in
business conditions and allow the process to react to such a situation. Link events
tend to be more technical by allowing sequence crosslinks between event elements of
that type.

Errors in the process can be handled by error event elements, while cancelations
of a business action is modeled using a cancel event. In case of transactions, the
compensation event denotes the trigger and start of a compensation action. If a
system-wide signal should be issued or caught by multiple processes, the signal event
type can be used. Multiple and parallel multiple events can combine multiple separate
events. Finally, the terminate event can trigger the immediate termination of a
process.

Not every combination of these event types are meaningful with both catching
and throwing semantics or are compatible with start, intermediate and end events.
Fig. 3.8 gives an overview of the available event type combinations in BPMN 2.0, as
well as a brief explanation of their meaning.

3.7.2 Activities

Business processes and workflows organize the labor necessary to meet the goals of
the process. As such, they need elements in the modeling to represent work being
performed by some entity, be it a worker, department or organization. Fragments of
work performed in a process are modeled using activities in BPMN.

Activities are graphically modeled as rectangles with rounded corners, as shown
in Fig. 3.9. From the perspective of the process, tasks can be both atomic and non-
atomic (compound). The most common form of activities is the task. Tasks represent
simple business activities that can be performed manually by a human actor such
as entering data into a form or they can represent automated processes such as an
action by machinery or call of a remote service. Simple tasks only consist of the
rounded rectangle with an additional label describing the task, however, in BPMN

64 Chapter 3. Business Process Modeling Languages

Figure 3.9: Graphical form of a BPMN activity as defined in [121]

2.0 more specialized tasks are available such as user tasks which specifically denote
work being carried out by a user of a workflow system. Such specialized tasks show
additional icons in the top left corner to designate their specialization.

Figure 3.10: An uncollapsed subprocess, showing its internal structure with a start
event, a task and an end event

The other type of activity is the subprocess. As the name implies, subprocesses
are themselves processes containing further BPMN elements as part of the subprocess
which are executed as a processes once the activity triggers. A number of special
subprocesses are available such as transactional subprocesses or event subprocesses
for even processing. Subprocesses can be either uncollapsed, as shown in Fig. 3.10,
or collapsed. In the uncollapsed state, the subelements within the subprocess are
displayed, along with a minus icon on the bottom center of the subprocess. This
icon lets the user switch a subprocess to its collapsed state, in which the elements
contained in a subprocess are hidden and the icon changes to a plus sign.

Figure 3.11: A task activity with attached error handler

All activities can be combined with special event elements called event handlers,
which are attached to the activity as shown in Fig. 3.11. These handlers are triggered

3.7. Business Process Model and Notation (BPMN) 65

if a specified event occurs within the activity and allows handling of such an event.
As a result, event handlers are always event elements of the catching type. Typical
examples are error event handlers, which allow the interception and handling of errors
which may occur while executing a task or subprocess, timer events which trigger a
timeout if the task execution exceeds a specified time limit or cancel event handlers
in case a particular activity is canceled for business reasons.

Figure 3.12: A task activity with a looping modifier as shown in [121]

Activities are also able to perform loops, where a task or subprocess are executed
multiple times iteratively. Figure 3.12 shows such a looping task, which is marked
graphically with a looping arrow icon. Looping activities are defined by two param-
eters: First, a condition which will end the loop once it evaluates true. Second, a
maximum loop count which will also terminate the loop once the loop has executed
the same number of iterations.

Figure 3.13: Task activities with parallel (left) and sequential (right) modifiers (from
[121])

Looping activities are essentially a shorthand for a common pattern consisting of
the activity, an exclusive gateway (see 3.7.4) and a sequence flow (see 3.7.3) looping
back on the task.

Additional modifiers for activities include parallel and sequential activities. Par-
allel activities are graphically represented with an icon consisting of three vertical
lines, while sequential activities display an icon of three horizontal lines as shown
in Fig. 3.13. Sequential and parallel activities are data-driven, which means they
receive a list of data items as input. For each item in the list an activity instance
is generated to process the item. As the name implies, sequential activities process
items sequentially in the order they are contained in the list, while parallel activities
process all items in parallel.

As with the looping activities, sequential activities are syntactic sugar which
can be replaced by combining gateways and sequence flows. They could either be
represented by an appropriately configured looping task or a combination of exclusive

66 Chapter 3. Business Process Modeling Languages

gateways and conditional sequence flows.
Parallel activities are not easily replicated with standard BPMN modeling el-

ements. While parallelism is supported through the use of parallel gateways (see
3.7.4), the number of items in the list is a runtime (instance) parameter which is
unknown at model time. As a result, the number of outgoing sequence flows can-
not be predicted in advance, thus impeding the parallel processing of item lists and
necessitating the use of parallel activities.

3.7.3 Sequence Flows

Like any activity-based business process modeling language, BPMN requires a mod-
eling element to specify the execution order of an execution thread of the process.
This function is fulfilled with the sequence flow element.

Figure 3.14: Graphical form of a BPMN sequence flow as defined in [121]

The sequence flow element is graphically represented as an arrow (see Fig. 3.14)
and denotes possible transition from one activity to another within the BPMN pro-
cess in execution.

Figure 3.15: Example for the use of sequence flow within a process [121]

Labels with a description of a particular sequence flow can be attached, illus-
trating the business meaning of the transition within the context of a process. As
demonstrated in Fig. 3.15, sequence flows can be used between any activities or
events, including event handlers. In this example, the process starts from an empty
start event, and attempts to perform a task. If the task is successfully performed,
the control flow proceeds to the empty end event and the process terminates. If the
task fails, an error handler is triggered and the sequence flow directs control to the
error handling task. After that task has been executed, the control passes along the
sequence flow to the end event and the process is over.

3.7.4 Gateways

Since most business processes are not simple linear work lists, BPMN introduces
gateway elements to support forking, branching and merging behavior for BPMN

3.7. Business Process Model and Notation (BPMN) 67

processes.

Figure 3.16: Basic BPMN gateway shape (from [121])

Gateways are represented graphically as diamond shapes as shown in Fig. 3.16.
Generally, gateways either have a single incoming sequence flow and multiple outgo-
ing sequence flows (branching or forking, depending on the semantics of the specific
gateway) or the gateway has multiple incoming sequence flows and a single outgoing
sequence flows (merging).

Figure 3.17: Table of gateway types in BPMN 2.0 from [11]

A variety of gateways with different semantics are available in BPMN as shown in
Fig. 3.17. The semantics specify whether a process control reaching a gateway con-
tinues as multiple parallel threads along each of the outgoing sequence flows (forking)
or if the control takes only a single specific path based on annotated conditions on
the outgoing sequence flows (branching) or a combination of both behaviors where
some but not all outgoing sequence flows are followed in parallel. While the merg-
ing behavior is different for each type, it is merely a mirror-image of the branching
and forking behavior: The merging gateway merely acts as a barrier, waiting for all
forked threads to arrive at the merging gateway before continuing with the outgoing

68 Chapter 3. Business Process Modeling Languages

sequence flow. The difference between gateway types are therefore based on theirF
branching and forking behavior.

However, as BPMN is a semi-formal language, not all gateway types have strongly
defined semantics associated with them. For example, the complex gateway only
specifies that a complex branching/forking behavior is supposed to be performed at
that gateway but does not clarify how this behavior is specified. The most common
gateway types with well-defined semantics are the exclusive gateway, the parallel
gateway and the inclusive gateway. The exclusive gateway is a strict branching
gateway. An incoming thread will continue on exactly one outgoing sequence flow.
The concrete sequence flow the thread will continue on is decided based on conditions
annotated on the outgoing sequence edges. In addition, a default sequence flow can
be defined which is followed in case none of the conditions on the other outgoing
sequence edges evaluates as true.

The parallel gateway on the other hand is a strict forking gateway. A thread
executing a parallel gateway will fork into multiple parallel threads for each of the
outgoing sequence flows. The execution will continue in parallel from that point
on until the threads are again merged at a merging parallel gateway. The inclusive
gateway is a combination of the behavior of the exclusive and parallel gateway. First,
the conditions on the outgoing sequence flows are evaluated and the thread is forked
for each of the sequence flows where the condition evaluates as true.

3.7.5 Message Flows

BPMN processes can define messages being exchanged between different parts of
the process. Since the sending and receiving of messages constitutes an event, the
message event element (see 3.7.1) has to be used to specify such occurrences.

Figure 3.18: Graphical form of a BPMN message flow as defined in [121]

The connection between two such message events can be modeled using message
flows. Message flows are represented as dashed arrows as shown in Fig. 3.18. Since
a message must have both a sender and a receiver, this means that the source of a
message flow must be a throwing message event and the target, at which the arrow
points, must be a catching message event.

While it is possible to model sending a message by one thread which is later re-
ceived by the same thread, a more typical case would involve an interchange between
two parts of a process being executed in parallel or interchanges between a process
choreography being contained and represented by the same BPMN model.

3.7.6 Pools and Lanes

In BPMN, pools define the participant, particularly in a collaboration context. The
entity representing a participant in a collaboration process is process dependent;

3.7. Business Process Model and Notation (BPMN) 69

examples could include departments of the same organization or even different orga-
nizations in cross-organizational collaborative processes.

Figure 3.19: Pool element as defined in BPMN (from [121])

Pools, as shown in Fig. 3.19, are optional in terms of processes and are only
needed when defining choreographies. However, they are sometimes useful as a vi-
sual aid to group the elements of a process. Since pools define major participants
in a collaborative process, it is not possible to connect direct sequence flows be-
tween elements of different pools. However, message flows can be defined to model
information exchange between the participants.

Figure 3.20: Lane elements as defined in BPMN (from [121])

Lanes or swimlanes, as shown in Fig. 3.20, are used to further subdivide the
process. Like the pool containing them, they extend the full length of the process.
They are used to organize and categorize activities within the process. For example,
they can specify service centers or groups of users in charge of a part of the process.
Unlike pools, sequence flows between different lanes of the same pool are allowed. In
addition, lanes can be further partitioned with additional nested lanes.

3.7.7 Text Annotations

Sometimes, for example in large and complex processes or processes with unusual
patterns or element usage, it may become necessary to explain aspects of the process
to a human reader of the model. This feature is especially important for informal

70 Chapter 3. Business Process Modeling Languages

(non-executable) process models which are only read by a human reader who may
need additional explanation to understand the process. In BPMN processes, attach-
ing such additional information can be accomplished using text annotations.

Figure 3.21: BPMN processes can be annotated using text annotation as shown here
(from [121])

Text annotations are graphically represented by an open rectangle. The annota-
tion text is attached to the right next to the open part of the rectangle as shown in
Fig. 3.21. Since the text has an informal role, there are no restrictions on the text
itself.

Text annotation is part of a number of BPMN elements called artifacts. Artifacts
are not active BPMN elements with specific semantics, rather they enhance such
elements or the overall process with additional information.

3.7.8 Associations

Information and artifacts such as text annotations (see 3.7.7) can be associated with
BPMN elements using association elements.

Figure 3.22: As described in [121], information and artifacts like text annotations
can be associated with BPMN elements using associations

Association elements are graphically represented in BPMN using dotted lines (see
Fig. 3.22). An optional arrow can give the association directionality if the attached
artifact requires it. While text annotations do not require directional associations,
some artifacts such as data objects (see 3.7.9.1) benefit from specifying whether the
object is consumed or produced by the associated BPMN element.

3.7.9 Additional BPMN Elements

In addition to the BPMN elements and artifacts mentioned in the previous sections,
the BPMN standard also defines additional elements and artifacts that can be used
both for informal processes and processes which are converted to workflows in the
Business Process Execution Language (BPEL). Since the system presented in this
work follows a different approach for processing BPMN, some of the elements were
not strictly required. Furthermore, some elements were not included since there was
no direct necessity for the in for the specific types of processes that are intended to

3.7. Business Process Model and Notation (BPMN) 71

use the proposed system. Nevertheless, in order to present a complete picture, these
additional elements are presented with a brief description in the following parts.

3.7.9.1 Data Objects

Data objects represent business data being exchanged in the context of a BPMN
process. In standard BPMN 2.0, they are used to specify data that activities such as
tasks or subprocess can either consume or produce while they are executed. Usually,
a data object represents some sort of business data; for example, a form that a
customer is supposed to submit which is later passed to another task performed by
an employee who processes the form.

Figure 3.23: Graphical representation of a data object in a BPMN process as defined
in [121]

Data objects can represent both singular objects or they can represent lists or
collections of data. Graphically, a data object is represented in the model as an
icon showing a folded piece of paper (see Fig. 3.23). They are attached to their
producing and consuming activities using directional BPMN associations (see 3.7.8).
In addition, data objects can be attach using non-directional associations to convey
the notion that the data object is used by the associated element in some loose
fashion, for example by representing a file on the file system which is accessed by an
activity.

3.7.9.2 Messages

Standard BPMN also includes an artifact type for representing a message being ex-
changed within the process. This artifact type can be used to either model messages
that are externally associated with the process or messages that are part of a more
formal exchanged modeled with message events (see 3.7.1) and message flows (see
3.7.5).

Figure 3.24: A BPMN message as defined in [121], the artifact being represented as
a letter-shaped icon

Figure 3.24 shows the graphical representation of a message. Messages are repre-
sented in BPMN with an icon displaying a letter. Messages have particular relevance
in the context of BPMN collaboration diagrams.

72 Chapter 3. Business Process Modeling Languages

In summation, workflow models designed in BPMN can be executable but some
elements of BPMN lack well-defined semantics and contain ambiguities. As a result,
valid models in BPMN can also represent non-executable business process descrip-
tions. Therefore, BPMN falls into the category of a semi-formal language, allowing
its use in an IT-driven workflow environment as well as a visualization and discussion
tool for informal settings. Since it includes a prominent graphical representation, it
is also a graphical business process and workflow language.

The next section will assess the task-based business process and workflow model-
ing approach regarding their support for long-running autonomous business processes
and evaluate them with regard to the three research goals, strategic-operation cohe-
sion, workflow model agility and balance of global control and local autonomy.

3.8 Limitations of Task-based Business Process and
Workflow Modeling Languages

Section 1.2 gives an introduction to long-running autonomous processes while also
outlining research questions and goals to improve support for such business processes.
Modeling languages are a key aspect in the design and implementation phases of the
BPM lifecycle described in that section. For the first two phases of the lifecycle, three
research goals are relevant when considering a language for long-running autonomous
processes.

The first research goal is strategic-operational cohesion, which aims to strengthen
the link between the operational aspects of a business process or workflow and the
strategic business goals an organization designates for the process.

Task-based modeling languages concentrate strongly on the operational aspects
of the business process: Tasks are defined and associated with a specific control flow
which enforces an order on the tasks being executed, while allowing for a limited
number of variants based on the modeled branches. This approach works very well
for production business processes since the strategic goals are fairly clear even at the
operational level (usually involving the production of goods). It also resembles how
many naïve approaches to describing a production process are accomplished with a
step-by-step instruction on how to assemble an item. However, when it comes to
long-running autonomous processes, this task-based, strongly operational approach
has some drawbacks, especially regarding workflow model agility and the autonomy
of the workflow participants. This is demonstrated with the following example.

Figure 3.25 shows a simplified business process modeled in BPMN (as an ex-
ample of a task-based language) for designing a new airplane model. This type of
business process is a development process and therefore a typical example of a long-
running autonomous business process involving autonomous experts from various
departments and involving an execution time measured in years.

The process describes how three parts of an aircraft are developed, the fuselage,
the wings and the engine. The first task of this process is the step of developing an
initial prototype design for the fuselage. This is followed by a design review of the

3.8. Limitations of Task-based Business Process and Workflow
Modeling Languages 73

Figure 3.25: Example workflow for designing an airplane

fuselage in which the participants discuss the prototype design and attempt to find
issues which need to be addressed before the fuselage design is finalized. The third
task involves the prototype designers resolving the issues raised during the design
review by adapting their prototype design. In the fourth task, the modified design
is finalized and committed to a formal document for later use during production.

The same basic steps are repeated for the wings and the engine. They likewise
require an initial design phase, after which the prototype design undergoes a design
review, where design issues are addressed and the prototype is finalized.

However, while it may be desirable for management to partition a development
process in such a way so as to complete the specification for each part within a
certain time frame, the three parts are ultimately interlinked and influence each
other; in other words, the engine is incorperated into the wing which is attached
to the fuselage. As a result, a design change in one part may result in requiring
additional changes to the other two parts. For example, a design change on the
engine may result in the engine being heavier, which then results in the need to
strengthen the bolts used to attach the wing to the fuselage, which requires both of
them to be changed to admit the heavier bolts.

However, if an already-finalized design is changed, it is required to undergo a fur-
ther design review in order to ensure that the alteration does not negatively impact
other design elements. As a result, during the design of one part it must become pos-
sible to revisit the design process of an already finalized part in order to accomodate
the changed design.

Furthermore, as mentioned in section 1.2, the participants in such a development
process often require a degree of autonomy. This means that the decision to start
developing one part over another is often best left to the expertise of the workflow
participants. This means that the workflow participants must be able to design the
parts in any order while also allowing revisits as needed. Although seemingly simple
requirements, modeling such a process flow in typical task-based business process
languages becomes surprisingly difficult.

74 Chapter 3. Business Process Modeling Languages

F
igure

3.26:
M
odification

of
the

previous
exam

ple
process

including
design

revisits
after

a
m
ilestone

has
passed

3.8. Limitations of Task-based Business Process and Workflow
Modeling Languages 75

This difficulty is demonstrated in Figure 3.26, which attempts to modify the
process previously shown in Figure 3.26, enhancing it with the necessary branches
to allow choice of design order and revisits of design reviews. The first possibility to
branch in the process begins right after the process has started, where the workflow
participants have to decide which part is to be designed first.

The next XOR gateway is inserted to allow design revisits after the task resolving
the issues and can allow either the continuation of the process if no revisit is necessary
or accomodate a revisit of the review part of the two other design elements, which
in this case would be either the wings or the engine.

After the finalization of the fuselage design, the process is met with another
decision based on an XOR gateway. Here, the process can return to the gateway
before the finalization step of the other two parts in case the finalization of the
fuselage was a revisit, otherwise, the process continues as normal.

This gateway is immediately followed by another XOR gateway, which further
enables the arbitrary and participant-driven design order. The participants of the
process can decide here if they want to continue the process by designing the wings
or the engine.

This pattern needs to be repeated for all three parts in order to allow the full
flexibility required by the autonomous workflow participants. In summary, each
part needs to be provided with the following three gateways and associated links in
addition to the initial starting decision about which part to design first:

• After addressing the design issues but before the part finalization, each part
of the airplane requires a gateway with outgoing sequence edges going to the
design review stages of all other parts and incoming sequence edges from the
gateway after the finalization of the parts as well as a sequence edge that
continues to the finalization in order to accomodate revisits of design reviews.

• Another XOR gateway has to be provided after the finalization step of the
part going to the previously mentioned gateway before the finalization step of
all other parts of the airplane and an option for continuing the process. This
allows for a return from design review visits.

• The design order is enabled by the last XOR gateway for each node that allows
the start of the design process of all other parts. The outgoing sequence edges
point towards the initial design stage for the other parts and have to be carefully
guarded so they cannot be followed if an initial design already exists.

Despite its complexity, this example is a strongly simplified design process. Many
development processes includes thousands of parts. In addition, each sequence of
design steps for parts adds to the complexity of the design steps of other parts due
to all the crosslinks and return branches between the design steps. Additionally, the
process has to keep track of the statuf of what design revisits are necessary and where
the process must return after a revisit in a manner that allows the correct decision
at each branching point. This results in a task of data management, which is not

76 Chapter 3. Business Process Modeling Languages

shown in the example figures, and increasingly leaves the area of business data and
is starting to become data kept not for business but technical reasons.

Furthermore, despite the enormous and quickly growing complexity of the branch-
ing mechanism for revisits, additional complexity incorporated into the design order
which is necessary for sufficient workflow flexibility for long-running autonomous
processes. The example as modeled in Figure 3.26 allows for revisiting the design
review at multiple stages and allows for any design order of parts for the participants
to follow during the process. For example, the participants can decide to start with
the wing design if they consider this to be necessary and continue with the fuselage
instead of the fixed order shown in Figure 3.25. As shown, if such an increased
amount of local autonomy is necessary for a development process, the number of
branches increases even further.

In conclusion, while task-based approaches to business process and workflow
modeling are very intuitive for typical production workflows, they only maintain
a medium connection to the strategic goals of the organization. Additionally, mod-
eling the required local autonomy and workflow flexibility in task-based modeling
languages is fairly difficult, complex and prone to error due to the quickly increasing
complexity of branching elements within the model. As a result, a different approach
is necessary to improve the support for long-running autonomous business processes
and workflows.

3.9 Rule-based Workflow Modeling

Aside from task-based language approaches to business process and workflow model-
ing, a number of alternative modeling solutions have been used to model particular
sets of business processes. In such systems, the workflow is defined by a set of rules
which can be triggered by changes to a workflow state, which then causes a pre-
defined procedure to be invoked. This procedure then performs the updates to the
state or causes external service invocations.

A number of rule systems which can be used to model workflows are available,
for example one such rule system commonly found and used in database system is
the Event-Condition-Action (ECA) approach described in [112]. In this approach a
defined event specifies when a rule should be triggered. This is followed by a condition
which is then evaluated. If the condition evaluates to true, a predetermined action
is invoked to perform the necessary steps. In database systems, these are usually
updates of data, however, for a workflow system this can easily be extended to
perform external actions.

ECA rule sets can be executed on rule engines using algorithms such as the
Rete algorithm (see [47] and [46]), which would also provide a convenient execution
platform for workflows modeled using this approach.

Since rule-based systems do not have a fixed control flow order and can perform
any action associated with a rule at any point when the right conditions are met,
approaches based on rules would help with the problem of workflow model agility.

3.9. Rule-based Workflow Modeling 77

For example, if part of a workflow needs to be revisited at a certain point, as shown
in section 3.8, an action containing the revisit steps could be created and associated
with an appropriate rule which is invoked when a revisit is required.

As a result, a number of attempts have been made to use rule systems for workflow
modeling in some form, for example by directly modeling them as ECA rule sets
as demonstrated in [60]. Another approach called DynaFlow not only uses rules
to create a dynamic workflow model but also includes the use of rules as part of
the workflow management system outside the actual workflow instances (see [113]).
Alternatively instead of modeling the workflow itself using rules, another approach
uses a rules system to modify an existing workflow if the rules in the systems are
triggered (see [116]).

Finally, even task-based approaches often allow the use of rules to enhance the
workflow in some way. For example, a database supporting an ECA rule system can
be employed as part of the workflow, although, this would limit their application
to data modifications. However, some task-based modeling languages also explicitly
contain a rule modeling element to include rules in the process. While such an
element by itself does not prevent the excessive complexity demonstrated in Figure
3.26, one could instead decompose the process into multiple independent processes
capable of being triggered by a rule event, effectively replacing the action part of the
rule with a workflow.

However, while rule-based approaches offer better support in terms of workflow
model agility over task-based modeling languages, they have significant drawbacks
in terms of the research goal of strategic-operation cohesion: The rules used in
such workflow systems are very small parts of entire workflow models and are not
associated in any way with the strategic planning of the organization. This severely
impedes the possibility of justifying the actions taken by the system. For example,
if a design review revisit is initiated by a rule that was triggered within the system,
it is not easy to tell the strategic reason why that particular action was invoked.
In fact, the strategic context given by a rule-based workflow system is even weaker
than using a task-based workflow modeling language where it is sometimes possible
to infer the strategic planning context of an action by its position within the control
flow.

This criticism of a rule-based approach is part of a more general issue with rule-
based programming approaches for development (see [101]): In this paper, Li iden-
tifies three major issues with rule-based programming approaches that limit their
application in practice. The first issue is the maintainability of the resulting prod-
uct, in the case of workflow systems, the workflow. Maintainability is often touted
as an advantage of rule-based systems, however, in practice this cost potential is
almost never realized because changing a rule system requires a knowledge engi-
neer, often even from the group of experts who developed the system. Additionally,
rule systems often do not allow for sufficient control over non-trivial applications and
therefore such systems often only have a declarative form but not declarative content
by including met rules that establish the necessary control.

78 Chapter 3. Business Process Modeling Languages

The second issue is the testability of such a system. In a conventional program,
certain language structures and conventions are available which make it easy to fol-
low the control flow of an executing program for test purposes. While it is possible
to write a difficult-to-test program, if good standards are followed during devel-
opment, the subsequent control flow can be followed readily. In contrast, standards
which establish such clear control flows are not well-supported when using rule-based
approaches. Structures that are relatively simple to implement in a conventional lan-
guage such as do-loops are very awkward to implement using a rule-based system.

Reliability of rule-based approaches is the third area identified by Li as an im-
pediment. Most real-world application require high or at least sufficient reliability.
While the correctness of many applications cannot be proven, Li notes that proving
even the absence of errors in part using testing cannot be established when dealing
with applications developed based on rules. This is due to the fact the given a set of
rules and data, many rule systems do not always give a clear answer regarding the
order of possible rule invocations and therefore lead to non-deterministic behavior of
the implemented application. This non-deterministic behavior results in performed
tests being unreliable predictors of real behavior since there is no way of knowing
whether the performed test will give the same result each time it is executed.

Finally, from a business process modeling aspect there is another issue with rule-
based approaches that ties in with the points made by Li regarding maintainability.
As noted by Li, the development and maintenance of such a system must be per-
formed by a knowledge engineer or similar technically versed person with extensive
knowledge about the particular rule system used.

However, in business process management, experts from multiple domains are
often part of the design process for a business process or workflow model. This not
only includes technical persons without particular knowledge in rules systems but also
domain experts from outside the technical sphere such as business or management
experts. Moreso, even the participants of the business process being designed are
part of this design process and are often deeply involved in the details of the business
process model.

In contrast, rules in such systems are highly technical and require a specialist to
understand both their purpose and their runtime effects. The resulting set of rules
are completely inaccessible for persons with a non-technical background and prevents
them from understanding the business process even though for many people from a
non-technical background, such as management and strategic planners, it is vitally
important to gain an insight in a business process.

This undermines one of the key goals of business process management, namely
making the business process known throughout the organization, which is also the
reason why many business process and workflow modeling languages offer a graphical
representation for designing business process models. While a set of rules may even-
tually result in the intended behavior of the workflow, given enough domain experts
and time, management and the business process participants are left unaware of the
process and cannot contribute to further improvements.

3.10. Workflow Instance Agility with Adept2 79

3.10 Workflow Instance Agility with Adept2

The necessity for additional flexibility in workflow management resulted in another
approach called Adept2 (see [136]) which allows the implemented model behavior
of a workflow instance to change to accomodate an altered business situation. This
approach is based on the notion that while workflow models often cover the com-
mon case, qualified workflow participants may need the ability to make autonomous
changes in certain cases.

Figure 3.27: Lifecycle of changed workflow instances (from [160])

This means that the business process covers the most common case but unpre-
dictable changes may necessitate a deviation from this standard case based on the
judgement of a qualified participant. A common example for this sort of business
process is the treatment of a patient by a medical professional, such as a nurse or
a doctor. While there may exist a standardized treatment plan for certain medical
conditions, the doctor or the nurse may notice unusual reactions or symptoms which
require a deviation from standardized procedure such as ordering additional tests.

Consequently, participants or actors in such workflows need to be enabled to
change the workflow instance after it has been enacted from the workflow model
and is executing on the workflow management system as shown in Figure 3.27. The
Adept2 approach generally follows the principles of task-based workflow management
but proposes that actors who are participating in the workflow are granted the ability
to change running workflow instances by inserting or deleting execution paths and
tasks.

The system includes a number of checks intended to ensure a level of consis-
tency and assist actors to make a desired change. Furthermore, if a certain change
proves to be generally useful, there is a path for merging the change back into the

80 Chapter 3. Business Process Modeling Languages

general workflow model so it may be reused in future cases. This allows continu-
ous improvement of workflows driven by participants over the lifetime of a workflow
model.

The Adept2 approach represents an example of how workflow may be adapted in
case of unpredictable changes in a business environment and therefore is a possible
path for the excluded research goal of workflow instance agility as shown in section
1.2. Due to their unpredictability, contingencies for such changes cannot be included
in workflow models beforehand. However, Adept2 allows alterations to the workflow
instance once situation of alternate business environments surface.

However, this high level of runtime flexibility comes at a cost that cannot be easily
reconciled with some of the other research goals and poses some issues in practice:

• As in the task-based approaches, there is no direct association of business goals
with the tasks being performed. This is particularly critical in the case of work-
flow instance agility since there is no assurance that added tasks serve any par-
ticular business goal of the organization. Consequently, strategic-operational
cohesion is not enforced and may be lost due to arbitrary changes.

• The approach of allowing workflow participants to modify workflow instances
shifts the balance between global control and local autonomy strongly to-
wards the autonomy aspects. Combined with the potential loss of strategic-
operational cohesion and considering that workflow participants often have
personal interests that diverge from the organization’s interests (see section
2.3), the approach bears the risk of a loss of strategic control.

• Predictable changes to the business environment that could be included as
structured contingencies either have to be address at runtime with the as-
sociated unnecessary loss of structuring or necessitate similar branch-heavy
approaches as task-based approaches.

• The qualification of the workflow participants regarding workflow design is
not necessarily guaranteed. While workflow participants are experts in their
specific field, they are usually not experienced workflow designers. Since the
modification approach requires them to modify the workflow model of a running
workflow instance, they may not be able to fully understand the implication of
the change or simply be unable to provide an ad-hoc modification that produces
the desired results.

Nevertheless, Adept2 demonstrates an interesting approach for addressing the chal-
lenge of unpredictable changes or changed requirements in the business environment.
However, it appears to be most useful for the area of ad-hoc workflows that center
around a common case with participant-driven individual adaption for each instance.
The next section will present a similar approach that is explicitly centered around
case management and therefore provides a certain runtime flexibility.

3.11. Case Management Model and Notation (CMMN) 81

3.11 Case Management Model and Notation (CMMN)

Another alternative to task-based modeling approaches is the Case Management
Model and Notation (CMMN). Like BPMN, it was standardized by the Object Man-
agement Group (OMG) and is intended to represent standardized language for case
management (see [122]) the same way BPMN is a standardized language for business
processes and workflows.

Figure 3.28: Claims management example in CMMN from [122]

Case management derives from the legal and medical fields in handling cases for
particular individuals. It focuses on a particular business situation and attempts to
resolve it towards a desired outcome. The focus here is on an individual case instead
of a generalized process, so while it may contain similar sets of actions, the use of
those actions are dependent upon the individual circumstances.

In terms of business process categories as presented in section 1.1, case man-
agement is centered around the area of ad-hoc business processes, which are highly
unique and customizable to the situation at hand. The basic building block of this
approach, as shown in Figure 3.28, is the case which represents a proceeding involv-
ing actions regarding a subject in a particular situation to achieve a desired outcome
(see [122]). The notion of a case was inspired by the legal and medical fields where
this approach is common for handling business situations.

Unlike the structured approach of task-based modeling language, cases may be
resolved in arbitrary ad-hoc manners and are not necessarily bound to strict execu-
tion orders. During the workflow modeling, the workflow designer can add tasks to
the case. Two different types of tasks can be distinguished: Mandatory tasks, which
are always part of the case and therefore the workflow execution and discretionary

82 Chapter 3. Business Process Modeling Languages

tasks which can be invoked by the workflow participants on a case-by-case basis at
runtime. This is often done by a special participant called a case manager, though
other models of participation are supported.

CMMN as an approach allows the inclusion of predictable changes in the business
environment as part of the workflow model. However, it’s case-based structure is
primarily aimed at ad-hoc business processes. Similar to the Adept2 approach, it
does not include a connection to the strategic planning and therefore does not provide
a strong strategic-operational cohesion. This is often acceptable in ad-hoc processes
since the complexity of such processes tend to be limited but it becomes more difficult
with regard to the more complex area of collaborative business processes. However,
while CMMN offer more limited workflow instance agility compared to Adept2, it’s
more structured approach provides a better balance between local autonomy and
global control by offering the workflow participants a number of options in the form
of discretionary tasks.

Overall, CMMN is a recent and interesting approach for the area of ad-hoc busi-
ness processes which has some limitations regarding more complex collaborative busi-
ness processes. In the next chapter, a goal-oriented approach for business process
modeling is introduced which is specifically aimed at these collaborative business
processes which ties the actions with the business goals of the process, providing
strong strategic-operation cohesion and further strengthening global control while
maintaining a high level of local autonomy.

Chapter 4

Goal-oriented Business Process
Modeling and GPMN

As shown in section 1.2, many product development processes are examples of long-
running autonomous processes and therefore exhibit the requirements of additional
workflow model agility and the need for strategic operational cohesions. These issues
where also noted in research done by Burmeister at Daimler AG while attempting to
model development processes which can be categorized as long-running autonomous
business processes. As a first step towards solving the issues, the idea of using the
business goals derived during the strategic planning phase (see chapter 2) for mod-
eling such processes was proposed and programmatically implemented using agents
(see [30]).

Using the business goals as modeling elements not only establishes a firm link
between the business strategy and the operational execution of workflow, by provid-
ing clear reasons in the form of goals for all actions in the business process instance,
but may also add flexibility to the execution of the workflow by separating the target
objective from the means to reach it.

Programmatical implementation of business process models is less than ideal
since it tends to exclude non-technical people from the design process (see chapter
2). As a result, a modeling approach was developed together with Whitestein AG
in order to graphically model such workflows called GO-BPMN (see [31]), which is
part of the Living Systems Process Suite and presented here in section 4.1. This
approach centered around a conservative BPMN extension using an interpreter to
represent business goals in process models.

Since the interpreter approach has a number of limitations (see section 5.4),
a more complex approach which unifies both approaches by offering both graphical
modeling and respresentation as well as agent-based semantics is part of this work and
presented in section 4.2 called Goal-oriented Process Modeling Notation (GPMN).

Both concepts use the same basic approach for designing business processes and
workflows using goals but use different means for enactment and GPMN adding
additional semantic depth. In both approaches, the modeling starts with the main
business goals being added to the process. Since these goals are often somewhat

83

84
Chapter 4. Goal-oriented Business Process Modeling and

GPMN

high-level and complex, they are successively broken down into smaller subgoals: For
each of the main business goals, smaller subgoals are defined with the notion that
reaching all of the subgoals implicitly causes the original goal to be reached as well.
This approach can then repeated for the set of resulting subgoals as well, breaking
them further down into smaller and smaller subgoals, creating a goal hierarchy with
the original business goal as the root node.

This breakdown of goals is repeated until the leaves of the goal hierarchy describe
goals that are sufficiently limited in scope so that they can be reached using a very
simple set of instructions. These instructions are provided using plan elements, with
one or more plans being attached to the goal as options for reaching the goal.

Since both approaches are based on the same premise of using business goals as
elements, both concepts exhibit similarities in their approach for providing a goal-
oriented business process language. However, in part due to the different semantics,
there are some key differences between the two concepts.

In this chapter, the GO-BPMN approach is briefly introduced, followed by a de-
tailed description of the GPMN approach. Finally, the two approaches are compared
with regard to the modeling capabilities.

4.1 Goal-oriented BPMN (GO-BPMN)

Goal-oriented BPMN (GO-BPMN, see [31]) was the next attempt after the goal-
context approach envisioned and programmatically tested at Daimler AG and was
aimed at allowing the modeling of goal-oriented process in a graphical way in line with
other business process modeling languages like BPMN. The GO-BPMN language
was designed and implemented by Whitestein AG as a conservative extension of
the BPMN language approach. Since, like GPMN, it is based on the idea of using
business goals as model elements, it uses a similar set of modeling language elements
centered around the use of business goals but with different execution semantic than
GPMN and a different approach for enacting instances of the process models.

The GO-BPMN approach follows the goal-oriented pattern business process and
workflow design, which is based on using the business goals of the process itself as
defined in the strategic planning stage of business process management, as modeling
elements in the language as well as a starting point and method for developing a
business process model.

As shown in Figure 4.1, a process modeled in GPMN consists of a hierarchy of
business goals, the root nodes of which represent the business goals for the particular
process. These goals are then broken down into subgoals that represent the top goal.
These subgoals are eventually simple enough to be implemented using plans, with
multiple plans that can be attached to a goal as options for fulfilling the goal (e.g.
EstimateCost and CalculateCost in the example).

Since GO-BPMN is considered to be an extension of BPMN, it follows a similar
pattern with regard to goal and plan execution: When a workflow instance is running,
a goal can be in one of six different states:

4.1. Goal-oriented BPMN (GO-BPMN) 85

Figure 4.1: Example of a GO-BPMN process

• Inactive, if the goal has not been active before (default state).

• Ready, when a goal has been activated but is not currently executing.

• Running, when a goal is currently executing.

• Failed, if a goal was executing but has failed to achieve its objective.

• Achieved, if a goal executed and has managed to achieve its objective.

• Deactivated, if a goal had been activated but was later deactivated before
achieving its objective.

Goals are therefore treated in a similar fashion to activities in BPMN process, which
also have a certain execution state. Generally goals become activated through the
edges used in the goal hierarchy, however, goals that are not currently in an active
state can be activated or reactivated manually in plans similar to the approach chosen
in GPMN.

GO-BPMN offers two kinds of goals, achieve goals that aim to meet a certain
state and maintain goals that aim to maintain it beyond the point of having achieved
it once. The achieve goal implements all of the states mentioned, however, maintain
goals lack the achieved and deactivated states since they do not reflect their specific
meaning in the process.

Plans in GO-BPMN are the means to achieve goals having no subgoals attached
to them. This means that they are only acceptable to be attached to leaf goals of
the goal hierarchy. The implementation of plans is done in BPMN which, during
runtime, is directly executed using an interpreter approach. Plans can optionally be

86
Chapter 4. Goal-oriented Business Process Modeling and

GPMN

hidden from view to allow for a more high-level and goal-centered perspective which
focuses on the objectives rather than the means of achieving them.

The workflow example in Figure 4.1 shows how a workflow designer can use the
option of attaching multiple plans to a goal. The goal CostsAssessed has the objective
of providing a cost figure as part of a larger analysis goal. In order to achieve this,
the workflow designer has provided two different plans as means for achieving the
goal: First, the CalculateCost plan which performs a precise cost calculation and
second an estimation plan called EstimateCost to allow for a rough cost estimate.

The reason for the two options is that while a more precisely calculated cost figure
is obviously superior to a rough estimate, it is not always desirable to calculate such
a figure. For example, there may be too many uncertainties impeding a precise
calculation of cost or there may be a time limitation which does not allow for a
lengthy cost calculation. Additionally, not all cases where the workflow is used may
require a precise cost figure, which may be difficult or itself costly to produce, with
a rough estimate being ”good enough” for the purposes of that particular workflow
instance.

The execution of both goals and plans is controlled using conditions. GO-BPMN
offers four types of conditions to a process designer, however, they are usually re-
stricted to certain elements in the language:

• Pre-conditions can be applied to achieve goals and only allow an achieve goal
to be executed if they evaluate true.

• Deactivation conditions will deactivate achieve goals if the condition is met.

• Maintain conditions define the state that should be maintained by a maintain
goal.

• Context conditions define when a plan is selectable as an option for achieving
a goal.

The conditions are based on the business process state which contains named ele-
ments that can refer both to internal engine states as well as user-defined business
states based on typed and named entries. This approach mirrors the concept of a
process context in GPMN and fulfills a similar function within the process.

4.2 Goal-oriented Process Modeling Notation (GPMN)

The goal-oriented process modeling notation is a business process and workflow
model language that was developed to facilitate the research goals of workflow model
agility, strategic-operational cohesion and to address the need for a balance between
the global control of a process and the local autonomy of business process partici-
pants in long-running autonomous processes (see [87] and [81]). It is based in part
on earlier work on the goal-context method developed by Burmeister of Daimler AG
(see [30]) and the graphical modeling approaches found in GO-BPMN (see [31]) but
unifies the two concepts and enhances their overall abilities by making graphical

4.2. Goal-oriented Process Modeling Notation (GPMN) 87

workflow modeling available as well as leveraging more capabilities of the original
programmatic goal-context approach.

4.2.1 GPMN Process Context

GPMN centers around the idea of directly including business goals as first-class en-
tities in the process models and representing the business environment and situation
as the process context. The process context exists implicitly in GPMN processes
and consists of a number context elements or context entries which are key/name-
value pairs in which the name is both a description of the information contained in
the value as well as a handle to access those values. The values of the context are
statically typed based types available in the Java language. This includes custom
and complex types which can be implemented as Java classes to help the workflow
designer to provide complex business objects.

Furthermore, context entries can alternatively be defined as sets. Context sets
also consist of a name and a static type but allow multiple values to be assigned to
the entry during runtime such as multiple reports or business documents of the same
type.

Name-value pairs within the context represent two different types of information
regarding the business environment. First, it can contain business information that
are part of the workflow state, such as business objects that are currently processed
by the workflow or information temporarily stored by the workflow for later use.
These values are modified by the workflow itself while it is executing.

In addition, the context also contains elements representing the business situa-
tion. This can include all kinds of business information that may impact the workflow
in some fashion, for example, expected delivery dates provided by suppliers, ware-
house contents and sales data. When modeling the context, it is key to represent
the situation of the business accurately, however, in order to limit excessive infor-
mation which needs to be observed and updated at runtime, it should be limited to
information relevant to the business process.

Figure 4.2: Example of a GPMN process context

Figure 4.2 shows an short example of a GPMN context configuration. It contains
four context entries which can be used in the business process. The first entry is
the current date as it applies to the workflow instance and uses the predefined Java
Date-class as the type. The second entry denotes the project budget and is typed
as a value based on the Java Long class. The following entry is a flag based on the
Boolean class, which marks whether the first milestone was reached in the process.
The fourth entry is the milestone report which is presumably set once the first

88
Chapter 4. Goal-oriented Business Process Modeling and

GPMN

milestone is reached. The report is typed as a custom Java class which implements
a domain-specific business object. None of the entries is marked as a set.

Entries can include an optional default value which is set when the process starts;
however, this is optional and is only used if the entry must avoid providing an
undefined value.

The values in the context can be accessed by conditions and plans (see
sections 4.2.3 and 4.2.4). This can be accomplished using a notation which
prefixes the name of an entry with ”$”, which causes a reference to the value
object to be injected in place at runtime. For example, if one wishes to invoke
the booleanValue() method of the Milestone1Reached entry, the term would be
”$Milestone1Reached.booleanValue()”.

The process context will influence the execution order and timing of the workflow
instance and therefore represents a key part for the goal of workflow model agility:
By including a model of the current business situation, the workflow model can then
use that information to decide whether a predicted change of the business situation
has occurred and chose the contingency included in the workflow by the designer to
remedy this situation.

4.2.2 Graphical GPMN Elements

GPMN is a graphical business process and workflow modeling language in which
a small number of elements are used to define the workflow semantics based on
the process context. GPMN departs from the control flow-centric and task-based
modeling and emphasizes the use of business goals. In addition, it also includes a
plan element for concrete actions, a subprocess element for referring to subprocesses,
activation edges to connect goals, plan edges to attach plans to goals and suppression
edges to model the suppression of goals in certain situations.

Figure 4.3: Elements of the goal-oriented process modeling notation

Figure 4.3 shows the elements of the language. The key element in the language
is the goal element. Goals represent a certain state that may be desired by the

4.2. Goal-oriented Process Modeling Notation (GPMN) 89

workflow at some point during execution. Ideally, this element is used to directly
represent the business goals of an organization’s strategic planning.

Business processes typically have only a small number of high-level business goals
that the process aims to achieve. For example, the typical production process may
have the business goal of assembling a product. A research and development process
may have business goals such as designing a new product or developing a production
process for such a product.

While these goals accurately describe what a business process is expected to
deliver, they tend to be high level and it is not easy to derive potential actions directly
from them. Therefore, GPMN allows the model designer to break down business
goals into subgoals, which are connected to the original goal using activation edges,
creating a goal hierarchy directly representing the strategic goals of the organization
for the business process.

The semantics of this connection is that the connected subgoals represent the
complete set of goals that must be accomplished for the primary goal to be com-
pleted. In other words, a goal is considered to be achieved once all of its connected
subgoals have been achieved. During execution, an active or adopted goal activates
its subgoals, creating a goal instance of the subgoal (the top goals have their goals
instance created during the start of the workflow). This basic behavior of activating
subgoals can be modified in some cases as described in the next section.

The subgoals themselves again can be further divided into smaller goals that are
attached to that subgoal. This approach lets the workflow designer start out with the
high level business goals and successively break them down into smaller and smaller
subgoals.

Once the designer has reached a point where the goals are sufficiently simple,
concrete actions can be associated with them. This is done using plans which are
attached to a goal using plan edges, which means that plan edges can only connect a
goal with a plan, connecting two plans or two goals being excluded. Plans represent
a set of instructions on how to accomplish a particular goal while the plan edge
represents the association with that goal. This means that plans are possible courses
of actions for the workflow to reach the desired state as defined by the associated
goal. As a result, multiple plans can be attached to a single goal in order to offer
multiple solutions for goal completion. Goals therefore represent target states for
the workflow while plans are the means available to reach those states.

Due to the refinement of the goals into subgoals, the leaf nodes of the goal hier-
archy are generally very simple goals where the means of reaching them can easily
be expressed in very simple instructions. When working on the implementation to-
wards a workflow model, these plans usually contain a reference to a BPMN workflow
fragment, however, other options for expressing the plan are possible. A currently
implemented alternative is the definition of the plan as a Java class.

Suppression edges offer a possibility to graphically model certain dependencies
between goals and therefore can only be used to connect two goals. One thing that
can occur in a goal-oriented workflow is that two goals are in conflict and, when

90
Chapter 4. Goal-oriented Business Process Modeling and

GPMN

pursued at the same time, may interfere with each other. For example, the goal
of maintaining room temperature interferes with the goal of refreshing the air in
the room. Suppression edges allow one active goal to temporarily suppress another
active goal while it is active. In the given example, the goal for maintaining room
temperature is suppressed while goal for refreshing the air is active (and executing
its window opening plan). Once the suppressing goal has achieved its objective, the
suppressed goal can be pursued again.

Subprocess elements can be used to modularize very deep goal hierarchies and
reuse them in part in other processes. Semantically, they behave like goals and can
be activated by other goals using activation edges, but do not allow the attachment
of plans nor can they have further subgoals. Instead, if a subgoal is connected to a
goal using an activation edge, it is considered equivalent to attaching the root goals
of a referred subprocess to that goal.

It is also possible to attach plans to a goal and, in addition, connect subgoals
using activation edges to the same goal. In terms of process semantics, this pattern
treats the adoption of the attached goals as one of the options for achieving the main
goal. In other words, once the main goal activates, it can either attempt to reach
the desired state by executing one of the plans or, alternatively, adopt one of the
attached goals.

Goals, subprocesses and plans can contain strongly typed parameters similar to
the context entries, which are runtime arguments that can be passed to the goal
instances and subprocess instances once they activate or to plan instances once they
are executed. They can be implicitly passed from goal to subgoal or subprocess once
activated or to a plan once executed from the parameters of the top goal. Upon
successful execution they are mapped back into the previous goal or alternatively
into the process context if a match can be found.

Figure 4.4: Simple example of a GPMN process model

Figure 4.4 shows a very simple example of a business process modeled in GPMN.
The main business goal in this process is to build a car and is represented by the
goal at the top of the goal hierarchy which has no incoming activation edges. While
this example process only has a single main business goal, it is possible to model

4.2. Goal-oriented Process Modeling Notation (GPMN) 91

processes which pursue multiple business objectives at once by adding more root
goals to the goal hierarchy.

In this simplified example, the main business goal is then split into two subgoals
which must be achieved to achieve the main business goals. The first subgoal is to
acquire an engine for the car. The second business goal is to assemble the car.

In this example, the goal hierarchy ends after only this simple split into two
subgoals. In complex real world processes, the subgoals are often subdivided into
further subgoals until sufficiently simple goals are reached. However, both the goal
of ordering an engine as well as the goal of assembling the car is not further divided,
instead plans are attached representing options for activities for the workflow.

The engine order goal has two plans attached, one which orders the engine from
one particular supplier while the other one orders from a different supplier. Another
alternative plan could be to produce the engine in-house. During execution, the two
plans mean that the workflow has two options for accomplishing the goal. The basic
unmodified semantic is to attempt one plan and failing that, try one of the remaining
options. The car assembly on the other hand only has a single plan attached, meaning
it’s the only available means to reach the goal of assembling the car.

Since the car cannot be assembled without an engine, a suppression edge is used:
When the process starts, both goals are adopted by the workflow, but the goal of
ordering the engine is temporarily suppressing the goal to assemble the car. Only
once the goal of ordering an engine has been accomplished can the goal of assembling
the car be pursued.

This process represents a very basic example of a GPMN workflow, however,
further details can be configured and changed. In order to further refine the semantics
of the goals for example, additional information can be added to specify their exact
behavior. The next part will give a description of the different goal kinds that are
available and how they can be configured.

4.2.3 Conditions and Goal Kinds

Not all business goals that can be found in many business processes including long-
running autonomous processes describe the same semantic idea. As a result, while
attempting to model different kinds of such business processes, four different kinds
of goals were found to be useful in different contexts (see [24], [87] and [81]). For
example, in a business process for designing a product that is required to be compliant
with certain norms, the goal that requires the compliance criteria to be met is not
merely a goal that needs to be reached at one point in the development process.
Instead product compliance must be maintained over the whole of the development
and include all changes that happen during development.

Furthermore, there must be an option to include the business environment in the
evaluation of goals to achieve workflow model agility. This is accomplished using the
process context as described in section 4.2.1 in combination with different kinds of
goal conditions. Goal conditions are statements that evaluate to either true or false
and are currently expressed in Java syntax based on the values accessible in that

92
Chapter 4. Goal-oriented Business Process Modeling and

GPMN

context.
In addition to goal conditions, goals are also available in different goal kinds. Goal

kinds define the basic semantics of the goal. Some goal conditions are only available
to some of the goal kinds; however, the following conditions can be specified for all
goal kinds:

• Creation conditions allow the activation or creation of a goal instance if the
expression defining the condition evaluates true. If changes state multiple
times, it can lead to the adoption of two or more goal instances at the same
time which are both pursued independently based on the semantics of the
model. An example use case for this condition could be included in a goal
that is part of a goal hierarchy normally handling the extension of credit to a
customer if so desired. The creation condition is useful for explicitly triggering
that part of the goal hierarchy if a customer is unable to pay after the purchase
but has previously declined applying for a credit.

• When drop conditions evaluate as true in a particular goal instance, that goal
instance is terminated regardless of whether it has met its objective. In most
cases, drop conditions specify under which circumstances it is no longer worth-
while to pursue a particular goal. In the example workflow shown in Figure
4.4, the goal for acquiring an engine could have a drop condition that triggers
if an engine is already available in the warehouse, dropping the goal after it
was adopted and thus avoiding ordering unnecessary items.

• Context conditions are semantically similar to suppression edges in that they
prevent the workflow instance from pursuing a particular goal it has adopted,
but allow for more complex modeling by specifying a condition based on the
context. The price for the added modeling flexibility over the suppression
edge is the lack of graphical representation. For example, instead of using a
suppression edge, the goal for car assembly shown in Figure 4.4, the goal could
include a context condition that inhibits the goal until an engine becomes
available.

These conditions, which are common to all goals, allow workflow designers to shape
the semantics of the goal. However, goals themselves are available in four different
kinds, some of which allow additional conditions to be specified which influence the
behavior of that particular goal kind.

Figure 4.5: A GPMN Perform Goal

4.2. Goal-oriented Process Modeling Notation (GPMN) 93

The first goal kind available to business process and workflow designers is the
perform goal. It is represented as an oval but includes the letter „P” at the top
to denote its kind (see Figure 4.5). A goal of the perform goal kind represents
the idea of simply performing an action, in other words, the desire to have certain
activities done. If multiple plans are attached to this goal, executing any of the plan
is sufficient to consider goals of this kind to be finished, regardless of what occurs
within the plan since only the performance of the activities is relevant to this goal
kind. Beyond the three kinds of conditions previously stated, the perform goal kind
does not have additional conditions.

Figure 4.6: A GPMN Achieve Goal

The second goal kind and the most common kind in many workflows is the achieve
goal. The achieve goal is usually what many people often intuitively perceive as a
goal. Goals of this kind denote that something needs to be accomplished or a certain
state be reached. In other words, achieve goals describe a desired state of the business
environment as represented by the context. As a result, the achieve goal includes an
additional condition type to describe this desired state:

• Target conditions denote a state of the business environment as represented by
the process context which the goal aims to reach. Once the target condition
evaluates true, the goal is considered to be successful and is terminated.

As a shorthand, the workflow designer can also omit entering a target condition for
an achieve goal. In this case, the target condition is implicitly considered to be a
successfully executed plan, or, in other words, if a plan executes and finishes without
generating an error, an achieve goal without target condition is considered to be
fulfilled.

Figure 4.7: A GPMN Query Goal

Another goal kind in GPMN is the query goal. Query goals are a specific goal kind
for information retrieval. Variables can be defined in the query goal which denote
the information that the goal aims to acquire. The semantics are then similar to
the achieve goal in that the goal is considered to be finished and a success once

94
Chapter 4. Goal-oriented Business Process Modeling and

GPMN

all variables have a value assigned to them. Like all goals, the attached plans or
subgoals are executed, in the case of the query goal, this is done until all variables
are assigned. Once a query subgoal has achieved its objective, the retrieved values
are then transferred into the process context. Aside from the variable definitions,
the query goal does not include any additional conditions beyond the three default
goal conditions.

Figure 4.8: A GPMN Maintain Goal

The final goal kind is semantically the most complex type of goal. In some
situations, it is the business goal of a process not only to reach a certain state in the
business environment but continue to maintain a state afterwards in case a violation
occurs at a later point. For example, a business process may go through a number
of tests in order to reach a milestone in the process. Once the process has reached
this milestone, it should ensure that later actions of the process do not impede the
state reached in the milestone and, if it should occur, perform any needed measure
to remedy the loss of conformance with the process milestone.

As a result, the maintain goal offers a condition to define the state that needs to
be continuously observed and maintained as long as the goal is active:

• A maintain condition defines a process context state that not only needs to be
reached but continuously observed while the goal is active. Should the maintain
condition be violated, a maintain goal causes the process to execute attached
plans or subgoals until the violation is remedied.

However, in some cases single boundary conditions are not enough to completely
define the behavior of all different maintain goals. For example, a process may want
to ensure that at least ten items of a particular type are in stock in the warehouse. If
a maintain goal only specifies a maintain condition that the quantity of the items in
stock must always exceed ten items and an attached plan only included a purchase
order for a single item, the goal will activate whenever a single item is removed once
the boundary condition has been reached once.

As a result, the maintain goal also allows for specification of a target condition
similar to the achieve goal though the semantics are slightly different from the achieve
goal. If a maintain goal specifies both a maintain condition and a target condition,
the goal will, once activated, continuously observe the maintain condition. Once a
violation occurs, measures such as plans and subgoals, are executed until the target
condition is reached, after which the maintain goal returns to observing the maintain
condition.

4.2. Goal-oriented Process Modeling Notation (GPMN) 95

Goals also include a number of flags and configuration options that allow workflow
designers to influence goal behavior as well as choices of the workflow regarding plans
and subgoals that are available to a goal. Normally, all plans and subgoals are tried
one after the other until the goal has been fulfilled. Previously attempted and failed
plans (plans that did not reach the conditions specified by the goal) are excluded
from further attempts. After all plans have been tried and the goal is not fulfilled,
the goal has failed.

The following configuration options allow some configuration of this default be-
havior:

• The retry flag specifies that a goal should retry another plan or subgoal option
after one has already failed. This flag defaults to a true state but can be set
to false which causes a goal to fail after failing only a single plan or subgoal
hierarchy.

• If the retry flag is set, a retry delay can be specified. In the default case, the
workflow will try another plan or subgoal hierarchy immediately after failing
one. If a retry delay is set, a delay is observed before another attempt to reach
the goal is made.

• The exclude configuration enables workflow designers to specify when plans
should be excluded as options for reaching a goal. The default setting is
when_tried, which will cause a plan to be excluded as an option if it has
been tried before, whether the plan has previously been successful in reaching
the goal (for example, restoring a maintain condition) or if it failed. Another
available option is never, which prevents the exclusion of plans. If combined
with the retry flag, all the plans are continuously tried until the goal has been
reached. The last two remaining options are when_succeeded and when_failed.
These two options exclude plans as options when they have previously been
successful or when they have previously failed.

• Normally, plans are tried in an unspecified but deterministic order. As an
alternative, it is possible for workflows to pick a random plan from the available
options. This behavior can be enabled by the workflow designer by setting the
randomselection flag.

• The normal behavior of a GPMN workflow when considering an active goal
with multiple plans or attached subgoal hierarchies is to try one of them after
another until the goal is reached. However, sometimes it is desirable to try all
of the available options at once, for example to quickly reach a result. This
behavior can be enabled with the posttoall option, which causes all plans and
subgoal hierarchies to be tried in parallel until the goal is reached.

As noted previously, goals can activate subgoals with activation edges. If multiple
subgoals are attached to a goal, all the subgoals activate and are pursued in parallel
unless somehow inhibited or dropped by suppression edges or conditions. However, a

96
Chapter 4. Goal-oriented Business Process Modeling and

GPMN

Figure 4.9: GPMN example process for preparing and selling a sandwich, plans are
omitted for brevity

special but very common case of inhibited goals is the activation of goals in a specific
order.

For example, in order to create and sell a sandwich, the bread must be sliced
first before further ingredients can be added on top before the sandwich is wrapped
and the price charged. In this case, one would start with a top level goal of selling
a sandwich, then adding four goals for slicing, adding of ingredients, wrapping and
charging as subgoals (see Figure 4.9).

However, to ensure the specific order of goals, one of two options would have to
be used to establish the ordered behavior of the goals. The first option is to use
context conditions for each of the subgoals. for example, the goal to add ingredients
could include a context condition that evaluates to true once a cut bread is available.
In this case the goal would be suppressed until the bread was cut. However, this
approach has the disadvantage of lacking a graphical representation. In addition, the
sequential activation of the goals needs to be coordinated using the process context,
which is supposed to represent business information and should not, just like any
workflow feature, be used to store technical information. While the information that
cut bread is available may be relevant to the business, in this case the information
only exists to facilitate a sequential subgoal activation order.

Alternatively, the subgoals could be connected using suppression edges which en-
forced the specific order. In this case, the cutting bread goal would have a suppression
edge to the other three subgoals. The ingredient subgoal would have a suppression
edge to the remaining two goals and so on (see Figure 4.10). Unfortunately, this
modeling approach leads to a convoluted and increasingly complex graphical repre-
sentation with the number of suppression edges growing quadratically as a triangular
sequence: E = (G−1)G

2 , where E is the number of suppression edges and G is the
number of subgoals.

As a result, these approaches for modeling the sequential activation of subgoals

4.2. Goal-oriented Process Modeling Notation (GPMN) 97

Figure 4.10: Sequential subgoal activation is enforced using suppression edges

is less than ideal, with the condition-based approach having a slight advantage in
terms of complexity. However, this ordered pursuit of subgoals is a very common
case (see [87]) and it is therefore useful to provide a more natural and compact option
for modeling such sequential subgoal activations.

GPMN therefore supports a special mechanism for sequential subgoal activation
called sequential goals. Any goal can be configured as a sequential goal, which is
marked as such with the string ”1..n” (see Figure 4.11). Sequential goals enforce a
sequential order on subgoal activation, which is defined by the natural order of a set
of numbers annotated on the outgoing activation edges. The order can be changed
by changing the annotated numbers on the activation edges.

The next section will give a brief overview of plans and their configuration, which
allows workflow designers to influence the options available to workflow instances.

4.2.4 Plans and Plan Configuration

In GPMN, plans represent the means for a workflow to reach goal objectives. They
are attached to goals using plan edges. For a perform goal, a plan specifies the actions
that need to be performed. When attached to achieve goals, they describe actions for
the workflow to meet the target condition for the goal. Plans attached to query goals
perform the necessary action to acquire the information defined by that goal, while
plans attached to maintain goals either attempt to restore process context to a state
where the maintain condition evaluates true or, if a target condition is attached,
until that condition is reached.

In GPMN processes, plans are usually implemented as BPMN fragments which
exist separately from the main process and are referenced by the GPMN plan ele-
ment in the process. For example, one of the plans for purchasing an engine from
the earlier GPMN example process in Figure 4.4 could be implemented as BPMN

98
Chapter 4. Goal-oriented Business Process Modeling and

GPMN

Figure 4.11: The ”Sell a Sandwich” goal was converted to a sequential goal with the
annotations on the activation edges defining activation order

Figure 4.12: BPMN fragment used as a plan for purchasing an engine

fragment as shown in Figure 4.12. The fragment submits the purchase order to the
manufacturer, then pays for the engine with a bank transfer. The plan for using the
other manufacturer may, for example, include a different payment method such as
credit cards or implement a different order submission.

Since the goal hierarchy already aims to minimize the scope of the goals as far as
possible, the BPMN fragments implementing the plans are usually fairly simple as
shown, however, the full complexity of BPMN as a language can be used to model
BPMN plans if necessary.

As an alternative to using BPMN fragments as plans, GPMN allows referencing
Java classes which are then used as a plan for reaching the attached goal. The
referenced class must contain a special body method which implements the plan
behavior. The plan is able to access the process context and parameters during
execution. The implementation of plans as Java classes potentially allows for more
flexibility compared to the use of BPMN fragments, but comes with two drawbacks;
They have no graphical representation and are not immediately intelligible to users
and designers who are not technically inclined.

4.2. Goal-oriented Process Modeling Notation (GPMN) 99

As mentioned in section 4.2.2, multiple plans can be attached to goals in order
to offer multiple options for reaching a goal. However, not all options are always
applicable in all business situations. For example, if a manufacturer does not have
any more production capacity or has ceased to produce a particular engine, the plan
for ordering from that manufacturer should not be used when such a GPMN process
instance is active. Therefore, plans can be configured with conditions similar to goals
to describe when they are appropriate. The following two kinds of conditions are
available for plans:

• A plan precondition defines whether a plan is an appropriate option for reaching
a goal based on the current process context. If the precondition does not
evaluate true, the plan is excluded when the decision is made to select a plan.
However, once a plan has been chosen, it will be executed regardless of whether
the precondition invalidates during the execution of the plan. This condition
is useful when a plan requires a certain state to have a chance of successful
execution. For example, a quick purchase approval may only be viable if a pre-
approved budget exists, otherwise, a lengthier check may have to be performed
using a plan without that precondition.

• The context condition of a plan on the other hand denotes the condition that
must be true at all times for a plan to be viable. Unlike the precondition, this
means that if the context condition invalidates during plan execution, the plan
is no longer viable and is aborted in favor of an alternative. This condition is
helpful when the business environment reduces the chance of a plan’s success
to zero. For example, requesting data through a network download (instead of,
say, acquiring it by physical transfer of a data medium) may only be useful if
network access is available. Once the condition changes, it is no longer useful
to pursue the plan.

These conditions can be used in combination with goal flags like posttoall and ran-
domselection to shape the options available to the business process based on the
process context. For example, a posttoall flag set to true would normally cause all
the plans attached to a goal to start executing in parallel, however, if some of the
plans are excluded through preconditions, only a subset may execute.

Additionally, plans can activate any part of the goal hierarchy independently of
the activations by means of the activation edges. For example, if a plan requires
performing parts of the process again under some circumstances, it can manually
activate a subtree of the business process by invoking a method in case of Java plans
or using a special task in case of BPMN plans which causes the process to adopt
the specified goal regardless of whether it has been activated before as part of the
hierarchy. In fact, using this explicit adoption can be used to adopt a subtree of the
hierarchy multiple times, thus creating multiple goal instances which can optionally
be configured using the goal parameters.

The next section will provide the formal GPMN meta-model which formally spec-
ifies the available elements in GPMN as well as their potential interconnections. The

100
Chapter 4. Goal-oriented Business Process Modeling and

GPMN

section will also summarize the modeling options of GPMN as part of the presenta-
tion of the meta-model.

4.3 GPMN Meta-Model

The previous section provided an introduction to the goal-oriented process modeling
notation (GPMN) and its graphical and non-graphical elements. GPMN is based
on the idea of using business goals as a first-class citizen and executable part for
modeling business processes and workflows.

Figure 4.13 shows the meta-model of GPMN and gives an overview of the avail-
able elements in the language. Each GPMN process can include one or more activat-
ables, which can be activated during runtime by the workflow creating an instance
of that activatable and denoting some desired state for the process to reach. Acti-
vatables also include parameters containing additional business information for the
particular activated instance.

Activations of activatables are largely defined by activation edges. The default
behavior is that activatables with no incoming activation edges are automatically
activated once the workflow or business process is enacted. Activatables with incom-
ing activation edges are activated once the source of the incoming activation edge
becomes active.

The most common type of activatable are goals, which are the only activatable
which can have outgoing activation edges. All goals can optionally be assigned three
different kinds of conditions: The creation conditions, defining the state in which the
goal exceptionally activated in addition the previous rules. Once a goal instance is
active, it can become inhibited in case the context condition is invalid. Finally, the
drop condition determines if the goal has become obsolete and should no longer be
followed. In addition, goal instances can be inhibited by other goal instances if they
are connected with a suppression edge.

Four kinds of goals are available for modeling: The perform goal expressing the
desire to execute an action, the achieve goal which aims to achieve a particular
state, the query goal, which describes the need for information and the maintain
goal requiring the process to maintain a certain state. The achieve goal includes a
target condition for the desired state and the maintain condition can include both
a maintain condition describing the state to be maintained and the target condition
for a state that needs to be reached once the maintain condition is violated.

The second kind of activatable is the subprocess. Subprocesses represent mod-
ularized parts of processes with potential use in multiple business processes. They
can be attached to other goals using activation edges and denote a shorthand of at-
taching the whole subprocess goal hierarchy to the goal with the outgoing activation
edge.

Concrete actions of the workflow are bound to goals as options for reaching the
goal by means of plan elements. Plans can be implemented in two ways, as a BPMN
Plan using a BPMN process fragment or as a Java class where the plan’s actions are

4.3. GPMN Meta-Model 101

F
ig
ur
e
4.
13

:
T
he

m
et
a-
m
od

el
of

th
e
G
P
M
N

la
ng

ua
ge

102
Chapter 4. Goal-oriented Business Process Modeling and

GPMN

described in a method within the class. Plans become options of action for goals by
attaching them to the goal with a plan edge. They also including parameters which
are passed from the goals attached to them using plan edges.

Finally, every GPMN business process and workflow contains exactly one process
context, unlike all other GPMN elements which can be included in processes multiple
times. The context represents the business situation, including all relevant internal
and external factors for the process. It consists of multiple context elements or
entries which are named as well as model specific aspects of the business environment.
The values of the context elements can change at any time while a GPMN process
is executing and influences both goals and plans through the previously described
conditions. The context can include values that reference business objects internal
to the business process or represent facts or information from outside the business
process as part of the larger business environment of the organization which may
have an impact on its execution.

This summarizes the meta-model of the goal-oriented process modeling notation.
The next section will give a detailed overview of the execution semantic when execut-
ing GPMN instances followed by a section providing an overview of the XML-based
storage format for GPMN business processes and workflows, which is then followed
by an evaluation of GPMN with regard to the objectives of supporting long-term
autonomous processes.

Chapter 5

Detailed GPMN Semantics and
Model Format

This chapter provides a more in-depth overview of the semantics of GPMN during
execution. In addition, a storage format for saving editable GPMN models to disk
is defined. Finally, key differences of the semantic approaches of GPMN and GO-
BPMN are compared using a number of examples in the last part of this chapter.

5.1 Goal and Plan Execution in GPMN

Business process and workflow instances based on GPMN models follow a strict dis-
tinction between the model elements and runtime instances of the elements. This
means, for example, that when a goal is activated, a goal instance of the goal is gen-
erated which is based on the goal element in the model but has a distinct runtime
state. The same approach applies to plans in that once a plan is selected for execu-
tion, a plan instance is generated, executed and destroyed once the plan execution
has finished.

A consequence of this approach is that multiple instance of both goals and plans
based on the same model element can exist in any given business process or workflow
instance. While activation edges and plan edges generally only initiate the genera-
tion of a single goal or plan instance, additional instances can be created through
other mechanisms, for example by a triggered creation condition or programmatic
activation of a goal within a plan.

This distinction is important because it differentiates two different concepts about
both goals and plans: Goal elements which are part of the process model represent
objectives that may be considered worthwhile for the organization to follow under
some circumstances, while a goal instance means that the process instance has now
taken the goal into consideration. The same applies for plans, where a plan element
in the model is a set of action that can be followed, while a plan instance is the
same set of actions plus the accompanying runtime state which is being executed at
a given moment as part of a business process instance.

This differs from approaches like BPMN where a task is a purely procedural con-

103

104 Chapter 5. Detailed GPMN Semantics and Model Format

struct which is either being executed or not without the explicit creation of runtime
instances.

In GPMN, goals represent desirable states for the business process and business
environment as represented by the process context, while the plans contain explicit
actions to be performed. As a result, a distinction is made on how they are treated
while a GPMN business process is enacted.

The first issue that arises deals with the question which of the available goal
instances should be pursued at a given moment. With the creation of a goal instance,
the business process instance has included it as one of the objectives it needs to
achieve. However, the states goals try to reach may contradict each other and one
state has to be reached first before an attempt can be made to reach the other.
Therefore, a GPMN business process instance must make a decision which of the
available goal instances should be suspended for a given time and which can be
actively pursued using am approach called goal deliberation.

During goal deliberation, the business process instances evaluate the current goal
instances based both on runtime and model information. Some of the available goal
instance may be inhibited from being pursued and can be excluded. For example,
if a goal has an outgoing suppression edge which is connected to a second goal, all
goal instances of the second goal are inhibited while one or more goal instances of
the first goal are available.

Another reason for goal instances to be inhibited is the violation of its context
condition. In this case the goal instance is retained but not actively pursued until
the context condition becomes valid.

Once the business process instance has decided which goal instances to actively
pursue, a decision has to be made about the means of reaching the set of actively
chosen goals. The means for reaching goals are defined in the model as plan elements;
however, not all plans are equally suitable or worthwhile to use under a given set of
circumstances.

The decision about which plan to execute in order to pursue goals is derived
by a technique called means-end-reasoning (see [20]). During this cycle the business
process considers the plans attached to the goal of the actively-pursued goal instances
and derives which of them should be executed. This step involves the evaluation of
available plans for each of the goals, some of which may not be available due to
conditions based on the process context. If multiple plans are available that are not
excluded, they will be tried either in definition order or at random until the goal is
reached or until no more plans are excluded. The exclusion of plans after they have
been tried can be controlled by the model designer through the exclude configuration
in the goal as described in section 4.2.3.

5.2 GPMN Intermediate Format

In order to store business process and workflow models designed in the goal-oriented
process modeling notation, a storage format is required. This is necessary for loading

5.2. GPMN Intermediate Format 105

and saving functionality as part of business process and workflow design tools but also
as a step for refinement into executable workflows by enabling the stored models to
be utilized by a workflow engine. As a result, the storage format should be machine-
readable; however, for error-checking and debugging by humans, it is helpful if the
format is also human-readable as long as the machine-readability is not impeded.

A common compromise for storing information in a format that is both machine-
and human-readable is the extensible markup language (XML, see [166]), which is
also used as the default format for other workflow languages like BPMN (see section
3.7) and BPEL (see section 3.5). Since this choice seems to provide a reasonable
compromise, the storage format chosen for GPMN is also based on XML (see [81]).
Since the format also represents the intermediate step between a goal-based business
process model and an executable workflow, the format is call the GPMN intermediate
format and uses the file extension ”.gpmn”.

XML is able to represents arbitrary types of data and therefore allows a great
deal of freedom in creating XML-conformant documents. However, in order to allow
reasonable interpretation of the resulting documents, a structure definition has to
be provided. With regard to XML, this task is usually accomplished using an XML
schema language, which is a document specifying the XML elements which are valid
within the context of the document, thereby providing a structure for tools and
interpreters to process the format.

Currently there are a number of schema languages available to model XML
schema formats such as the common Standard Generalized Markup Language
(SGML, see [61]) and the W3C XML Schema (XSD, see [107]). The GPMN
intermediate format, however, is defined in a schema format called Relax NG (see
[34]), but uses the data types as defined in the specification of XSD (see [14]). The
full specification of the GPMN intermediate format is listed in Figures 5.1, 5.2 and
5.3).

The format uses its own XML namespace which is usually denoted as ”gpmn”,
which is the pattern followed in this text, but a different qualifier may be associated
with the namespace URL if needed. All tags associated with the format are part of
that namespace. The model starts with a <gpmn:gpmn>, which denotes the beginning
and, with the corresponding closing tag, the end of a GPMN model.

Many business process and workflow language make a distinction between the
semantic aspects of the model, which defines the properties of the business process
or workflow that are necessary in order to understand the execution semantics of the
workflow and the visual aspects of the model which are necessary for the graphical
representation of the process model.

The advantage of this approach is that the part necessary for graphical represen-
tation can be ignored by a workflow engine which loads the process model and may
even be omitted to save space in files intended for execution in cases where the file
is only used for enactment rather than modeling and design.

In most cases, both aspects are generally included in the same file but it can
also be split up in two different files such as in an older iteration of the Eclipse

106 Chapter 5. Detailed GPMN Semantics and Model Format

BPMN modeling tool (see [51]). However, the disadvantage of the two-file approach
is that it makes it harder to ensure all necessary data is available to applications
requiring them since one of the files may get lost. Furthermore, there exists an
implicit reference between the two files which may be confusing to users and lead
them to mistakenly delete one or the other. As a result, a newer version of the Eclipse
tool (see [52]) has abandoned this approach in favor of the standardized BPMN 2.0
format, which includes both aspects of processes in the same file.

Since the approach of distinguishing the two aspects, the GPMN intermediate
format also distinguishes between these two aspects of the model and separates the
business model, which describes the structures relevant to the business process itself
and the visual aspect, which describes visual features of the model such as the size
and positioning of goal objects and plans. However, both aspects are contained in
the same file.

First, the description of the business aspect of the process model is started with
the <gpmn:gpmnmodel> tag. The first optional tag that can be defined within the
<gpmn:gpmnmodel> tag is the <gpmn:modelname> tag, which wraps the name of
the model as chosen by the process designer. The model name can be followed
with a human-readable description of the process which is surrounded with the
<gpmn:modeldescription> tag.

The first element of the business part of the GPMN intermediate format
specifies the process context. The context section is started and closed with the
<gpmn:context> tag. Within the context tag, context entries can be defined. This
is accomplished using the <gpmn:contextentry> tag, which includes a string-typed
name attribute for specifying the name of context entries as well as a type attribute
which uses a string to specify the Java type this entry represents. Both of these
attributes are mandatory and must be included to define an entry.

As an option, a set attribute can be included in the context entry tag in order
to define the entry as a set of multiple values by setting the attribute to true. The
default state for an entry is false for this attribute if it is omitted. Lastly, the tag
itself can surround a Java expression which evaluates to an initial value for the entry,
however, this is also optional. If no initial value is specified, the value evaluates to
null.

The next section of the format describes the goals, which is started and closed
with the <gpmn:goals> tag. This section includes all the goals in the process. Each
goal is started with a <gpmn:goal> tag. Each goal tag includes a number of manda-
tory and optional XML attributes defining properties of the specific goal and also
specifies which kind of goal the entry represents (see also section 4.2.3):

• The first attribute is the id attribute, which is a unique identifier expressed as
a string value. This value identifies the goal as an object within the process
and is used to reference the goal in other parts of the process.

• The name attribute sets the name of the goal. This attribute has no semantic
effect but provides a human-readable name for the goal identifying its purpose.

5.2. GPMN Intermediate Format 107

• A goalkind attribute is mandatory when specifying a goal, which defines the
kind of the goal and its semantics. The attribute is a string value which is
restricted to the values ”perform” for perform goals, ”achieve” for achieve goals,
”query” for query goals and ”maintain” for maintain goals.

• The optional retry attribute, which defines the retry flag state. If omitted,
the state of the flag defaults to true.

• The retry delay is defined by the optional retrydelay attribute, it defaults to
zero in cases where it is omitted which is interpreted as instantaneous retries.

• The optional randomselection attribute indicates whether the goal selects
plans at random or in the order as they are defined in the GPMN intermediate
format file. The default value for this attribute is false, meaning that the
defined order is chosen.

• The exclude attribute, defining how plans are excluded with a default value
of ”when_tried”. Other valid values are ”when_failed”, ”when_succeeded” and
”never”.

• In order to indicate whether a goal has a sequential activation semantic, a
sequential attribute can be set to true or false, with false being the default
value.

• Finally, the optional posttoall flag indicates whether plans attached to the
goal are tried sequentially or are executed in parallel depending on the condi-
tions. This flag has a default value of false, setting the sequential plan activa-
tion as the default.

As previously described in section 4.2.3, goal behavior can be further shaped using
conditions. These can be described in the GPMN intermediate format as optional
tags within the goal tag. Although not all conditions are valid for all goal kinds, the
ones that can be applied to all goal kinds can be defined within a goal tag using one
of the following optional tags:

• The goal creation condition as previously described can be specified by adding
a <gpmn:creationcondition> tag within the goal tag. The tag contains an
expression as a string which defines the condition when the goal should be
activated independently from the activation edges.

• The condition defining when to drop an activated goal is defined using the
<gpmn:dropcondition> tag, the condition itself again specified as a string
within the tag.

• Finally, the context condition can be specified the same way as the previous
conditions using the <gpmn:contextcondition> tag.

108 Chapter 5. Detailed GPMN Semantics and Model Format

Some goal kinds allow for additional conditions to be defined. For example, both the
achieve goals and the maintain goal allow the specification of a target condition using
a <gpmn:targetcondition> tag. The maintain goal kind also allows the definition
of a maintain condition using the <gpmn:maintaincondition> tag.

Parameters for goal instances can be declared by including a goal parameter
section with the goal using the <gpmn:goalparameters> tag. Within that section,
individual parameters are specified with <gpmn:parameter> tags. The parameter
tag, similar to the context entries, must include a name and type attribute for the
name and type of the parameter respectively and can optionally include an expression
within the parameter tag to define an initial value.

The next section after the definition of the goals is the section defining the sub-
processes. It is surrounded with the <gpmn:subprocesses> tag, with each subprocess
defined in the process being declared using the tag <gpmn:subprocess>. This tag
includes a mandatory string-based id attribute with a unique identifier for refer-
encing and an optional name attribute entering descriptive strings as names for the
subprocess. The subprocess itself is referenced within the subprocess tag as a string
with a suitable path to the subprocess.

Following the subprocess section is the plan section, which is started and finished
with the <gpmn:plans> tag. Within this plan section, individual plans are defined
with <gpmn:plan> tags, which, like the goals, each include a mandatory id attribute
with a string-based unique identifier which is used as a handle for the plan to be
referenced in other parts of the process. An optional name attribute assigns a human-
readable name to the plans the same way as goals are named. The plan tag itself
then includes a reference to the actual plan implementation. This can either be a
BPMN file or, alternatively, a Java class, the former being implicitly identified by
the ”.bpmn” suffix of the reference.

The segment following the plans section starts with the
<gpmn:activationedges> tag and defines the activation edges in the
process. Each activation edge is specified with a <gpmn:activationedge> tag,
which includes two obligatory attributes, a source attribute setting the source and
a target attribute for setting the target of the edge. Both attributes are strings in
which the only valid values are unique identifiers of goals for the source and unique
identifiers of goals or subprocesses for the target. The edge also includes an id
attribute with its own unique identifier.

If the source of the activation edge is a sequential goal, the integer value assigned
to the order attribute is used to define the activation order of the sequential goal.
The integers provided in the order attributes of all activation edges with the same
sequential goal source must be a total order and, as a result, identical numbers for
two of such edges is invalid.

Subsequent to the activation edges is the section with the plan edges which is
surrounded with the <gpmn:planedges> tag. Each plan edge in the process is detailed
with a <gpmn:planedge> tag within that section. The source and the target of the
plan edge are denoted identically to the activation edges with the attributes source

5.2. GPMN Intermediate Format 109

and target, each specifying a unique identifier string. However, unlike activation
edges, the source identifier must refer to a goal while the target identifier must refer
to a plan. Like the activation edges, the plan edge tag also has an id attribute
providing the edge with a unique identifier.

Both activation edges and sequence edges also allow the inclusion of a name at-
tribute in order to specify a string used as a descriptive name for a specific activation
or plan option.

The section on plan edges segues into the section that concerns the suppression
edges, which uses the same pattern as the previous edge sections by surrounding the
section with a <gpmn:suppressionedges> tag and detailing individual suppression
edges with <gpmn:suppressionedge> tags. Each of the tags also have the source
and target attributes for referencing the source and target objects for the edge,
however, in both cases only goal references are valid for both target and source.

With these sections, the definition of the business aspects of a GPMN process are
sufficiently defined to convey the semantics of the process and the <gpmn:gpmnmodel>
tag is closed. Nevertheless, in order to provide a graphical representation of the pro-
cess, some additional information is required which does not carry business semantics
and is therefore not used for execution of GPMN processes. This is defined in the
section following the definition of the business aspect and it is surrounded with the
<gpmn:visualmodel> tag to denote the visual aspects of the GPMN process.

This segment is divided into sections for goals, plans and edges, surrounded
with the <gpmn:vgoals>, <gpmn:vplans> and <gpmn:vedges> tags respectively. The
goal and plan sections reference the goals and plans defined in the business section
by specifying their unique identifiers in the id attribute of the <gpmn:vgoal> and
<gpmn:vplan> tags. Both tags also include four additional double floating point
attributes, an x attribute for the position of the object on the x-axis, a y attribute
for the position on the y axis, a w attribute to define the width and an h attribute
to define the height of the object.

Since the edges already define a source and a target in the business section and
therefore already have a defined start and end point visually, this results in the
visual section for the edges being optional. However, it is sometimes useful to add
routing points to define a path for the edge instead of the edge being drawn straight
from the source to the target. Therefore, in each of the <gpmn:vedge> tags, which
reference their business counterpart using their unique identifier in the id attribute,
can include <gpmn:waypoint> tags which define the intermediate waypoints for the
edge using its x and y attribute to define the x- and y-position respectively.

GPMN models using the GPMN intermediate format are stored as text files en-
coded with UTF-8 (see [169]) with the file name suffix ”.gpmn2” in order to distinguis
it from an earlier and non-final iteration of the format. The next section will evaluate
GPMN with regard to the research goals that were set in section 1.2 and compare
it with other business process and workflow modeling languages presented in earlier
sections.

110 Chapter 5. Detailed GPMN Semantics and Model Format

F
igure

5.1:
F
irst

part
of

the
R
elax

N
G

definition
of

the
G
P
M
N

interm
ediate

form
at

5.2. GPMN Intermediate Format 111

F
ig
ur
e
5.
2:

Se
co
nd

pa
rt

of
th
e
R
el
ax

N
G

de
fin

it
io
n
of

th
e
G
P
M
N

in
te
rm

ed
ia
te

fo
rm

at

112 Chapter 5. Detailed GPMN Semantics and Model Format

F
igure

5.3:
F
inalpart

of
the

R
elax

N
G

definition
of

the
G
P
M
N

interm
ediate

form
at

5.3. Modeling with GPMN 113

5.3 Modeling with GPMN

In section 2.7 three research goals, strategic-operational cohesion, workflow model
agility and balance of local autonomy and global control were presented for the de-
sign phase of the business process management lifecycle in which the business process
modeling language represents a key aspect. Strategic-operational cohesion ties the
more loosely organized action in a long-running autonomous process to strategic
planning. Increased local autonomy by participants allow them to retain their inde-
pendence which has to be balanced against the need for global control in order to
reach the defined business goals. Workflow model agility enables workflow designers
to easily include contingencies for predictable changes in the business environment
that can occur over the long execution time of the process.

If the language is used in the implementation phase as a workflow modeling
language, two of these three research goals, the balance of global control and local
autonomy as well as the workflow model agility, also affect the implementation phase.

Strategic-operational cohesion can be difficult to establish in many business pro-
cess and workflow modeling languages. For example, in section 3.8 it was shown
how many task-based modeling languages, while clearly showing what is being done,
only implicitly show the reasons for particular actions and therefore only have a
weak link to strategic planning. It is sometimes maintained through non-executable
meta-models or annotations, however, this connection is not part of the execution
semantics and tends to be neglected over time once the processes get reengineered.

In GPMN on the other hand, strategic planning is present in the model itself
through the representation of business goals as elements of the business process
model. Furthermore, in workflows designed in GPMN, a link to strategic planning
is always present by evaluating the active goal instances and how they related to the
root goals representing the key business goals for the process.

Sets of actions in GPMN are wrapped in plans which have a defined association
with certain goals which are part of the overall goal hierarchy. Therefore, actions
taken by a business process or workflow instance not only carry information about
what is being done at the moment but also offer a well-defined business reason for
why they are being performed at the time.

The difficulties of allowing workflow model agility and a greater amount of local
autonomy for the autonomous workflow participants in long-running autonomous
processes was demonstrated for task-based business process and workflow modeling
language in section 3.8 by using an example of a development process. The process
involved the development of an airplane and revolved around the development of
three parts required for the plane as shown in the linear approach in Figure 3.25.

The workflow model agility required that when one part is designed in a way
that requires an additional design review of a previously designed and finalized part.
These reiterations of previously performed parts of the workflow were coined as
revisits and required that a control flow path not only to the part of the workflow
needing to be revisited but also a return path when the revisit has concluded.

Furthermore, increased autonomy in case of this sample development process

114 Chapter 5. Detailed GPMN Semantics and Model Format

means that the workflow participants must be able to chose the order in which the
parts are designed based on their expertise. This means that not only an initial
choice must be selectable after process enactment but after the finalization of each
part the following part must be selectable from the remaining ones in order to allow
arbitrary orders.

As was demonstrated in Figure 3.26, it is possible to design a workflow with
both the required flexibility and the provision of revisits in task-based modeling lan-
guages. However, it was also shown that such processes have an excessive amount of
branching. While in simple example processes such as these the inclusion of the re-
quired branching, despite being fairly confusing to non-technical users and designers
of business processes, may still seem manageable, more complicated processes with
more parts being involved quickly outstrips the usefulness of the language to clearly
represent the business process.

In GPMN, a different approach to branching can be chosen to allow the required
flexibility and autonomy as demonstrated in Figure 5.4. In this business process
model, the process design is started by including the business goal of the process as
the root element of the GPMN process goal hierarchy, which in case of this example
is the achieve goal described as ”Finish Airplane Design”.

Since the goal is considered accomplished when schematics for all parts of the
airplane have been developed, this naturally leads to the three subgoals of the main
business goal of the process. The achieve goal ”Generate Fuselage Design” is re-
sponsible for finishing the fuselage design while the ”Generate Wing Design” and
”Generate Engine Design” achieve goals aim to provide the design for the wings and
the engine respectively.

In the original process, each of the parts had four tasks associated with them:
The initial task for developing the initial design of the part followed by three tasks
for completing the developed design: First, a design review is performed to find
design issue with the current design of the part, then the issues found during the
design review are addressed by changing the design and ultimately the part design
is finalized in the last task for each part.

In the GPMN version of this process, these steps are broken into two goals. In
case of the fuselage, the first goal is the ”Design Fuselage” goal which aims to provide
the initial design of that part similar to the task providing the initial design in the
process in the task-based approach. A plan is provided for the goal in order to
provide the necessary steps for generating the initial design of the part.

The design review along with the design adaption and finalization are the respon-
sibility of the second goal, which in case of the fuselage is called ”Maintain Finalized
Fuselage Design”. Similar to the goal ”Design Fuselage”, a plan is attached to perform
the necessary tasks for this part of the process.

Since a design cannot be finalized before the initial design has been provided,
the previous goal named ”Generate Fuselage Design” is defined as a sequential goal
with the outgoing activation edge going towards the initial design goal being assigned
the order ”1” and the activation edge going to the goal for maintaining the finalized

5.3. Modeling with GPMN 115

F
ig
ur
e
5.
4:

A
ir
pl
an

e
de
si
gn

pr
oc
es
s
m
od

el
ed

us
in
g
G
P
M
N

116 Chapter 5. Detailed GPMN Semantics and Model Format

design being assigned the order ”2”. This means that the goal for maintaining the
design is only activated after the goal for the initial design has been achieved (i.e.
an initial design has been generated).

When the business process is enacted, the root goal is activated which in turn
activates the achieve goals aiming to create the design for all three parts. Since the
goals are sequential, they initiate the first goal in the sequence which, in each case,
is the creation of the initial design of the part. At this point, the goals of the process
is to create an initial part design and the workflow participants are able to chose
which of the parts to design first.

At any point, the initial design of any other part can be initiated, allowing for
parallel work on those designs which is a flexibility feature not provided even by the
heavily branched task-based model shown in Figure 3.26.

Once the initial design for a part is provided through the plan, the attached
achieve goal instance will have met its target condition and terminate successfully.
As a result, the sequential goal that aims to generate the finalized design will proceed
to the next goal in its sequential order which, in case of the fuselage, is the goal labeled
”Maintain Finalized Fuselage Design”.

This newly activated goal is a maintain goal, the maintain condition mandating
the existence of a finalized design will be monitored after activation. Since the initial
design has just been finished and no design review has been performed, this maintain
condition is violated immediately and the goal will cause the process to proceed with
the attached plan to restore the condition, which contains three elements; the design
review, design adaption and finalization tasks.

However, after the maintain condition has been accomplished, unlike an achieve
goal the maintain goal instance will stay active and continue to monitor the condition.
This pattern of a maintain condition will allow for the revisits of the design review
part of the process: If any other part of the process causes the maintain condition to
be invalidated again, the goal will again use the plan with the design review process
fragment to restore the finalized design.

As a result, this relatively structured and clear process design allows the same
and even greater flexibility than the task-based approach with a large amount of
branching and therefore demonstrate the advantages of the goal-oriented approach
of GPMN in long-running autonomous processes such as the one used as the basis
for the example.

The next chapter will proceed with an exposition of necessary infrastructure
and tools required to turn GPMN-based business process models into executable
workflows. It will further elaborate on the underlying engine for executing GPMN
workflows as well as provide a background on the infrastructure supporting them.

5.4 Comparison of GO-BPMN and GPMN

As noted in the beginning of this chapter, both GPMN and GO-BPMN are based on
the goal-context approach conceived at Daimler AG and therefore follow the same

5.4. Comparison of GO-BPMN and GPMN 117

approach of using business goals as modeling elements in their business process and
workflow languages. However, the approaches use different semantic bases for the
modeling language: GO-BPMN is understood as a relatively conservative extension
to BPMN and therefore follows a similar state machine-driven approach. In contrast,
GPMN follows an approach of separating model elements from instances and uses a
two-step process of goal deliberation and means-end reasoning to process the GPMN
models during execution.

These two approaches result in some differences regarding the modeling capabil-
ities and resulting execution flexibility of processes modeled in each language. This
section will point out major modeling differences with a focus on the added flex-
ibility of the GPMN approach over the more conservative interpretation used by
GO-BPMN.

5.4.1 Goal Instantiation

In GO-BPMN workflow instances, goals which are part of the process are unitary
instances that can acquire certain states such as inactive, when the goal has not
been activated, active, when the goal is active, or running, when the goal is not only
actively pursued but its plans are being executed. The goal itself however is not
reified beyond its existence within the process model.

In contrast, the GPMN semantic requires creation of goal instances from the goal
element in the process once a goal has been activated. These goal instances can be
individually configured through parameters and are pursued individually in parallel
with constraints being evaluated for each instance.

Both GPMN and GO-BPMN allow the manual activation and reactivation of
goals within the goal hierarchy by use of library calls/tasks within the plans of the
process. However, in GO-BPMN, the goal can either be active or inactive/finished
while in GPMN multiple instances can be created at once.

Figure 5.5 shows an example process demonstrating how goal instances increase
the usefulness of the reactivation of goals within plans. The process has a single root
goal of preparing a pizza which is divided into two subgoals, one for acquiring and
preparing a topping and another for assembling the final product.

The branch that prepares an ingredient can be configured with a parameter
but when no parameter is set, defaults to preparing the dough. The rest of the
branch is divided into two steps, one for ingredient retrieval either from storage or
by supermarket purchase and the second step of preparing the ingredient by opening
its container and optionally using the blender.

After the initial ingredient (the dough) has been prepared, the process continues
with the second step by activating the goal ”Assemble and Finish Pizza”. This part
is also split into two steps. In the goal activated first, the toppings for the pizza are
assembled while the second goal aims to finish the pizza by baking it.

The plan to assemble toppings for the pizza can now reuse the subtree of the goal
hierarchy that deals with ingredient preparation through the use of goal instances:
The plan reactivates the ”Acquire Prepared Ingredients” goal for each topping but

118 Chapter 5. Detailed GPMN Semantics and Model Format

Figure 5.5: Example of a process that employs the use of goal instances by reacti-
vating the goal branch starting with the ”Acquire Prepared Toppings” goal

configures each instance to acquire and prepare a specific topping instead of default-
ing to the goal. These goals are then pursued in parallel, making use of the available
plans as necessary until all toppings are assembled and prepared. The final pizza is
then baked as part of the second step and the process terminates.

This process demonstrates how goal instances can be employed to reuse parts of
the goal hierarchy in different capacities to their default, adding additional modeling
flexibility to GPMN.

5.4.2 Allowing Goal Subtrees as Plan Alternatives

In GO-BPMN, plans that can be used to fulfill goals can be attached to leaf goals of
the goal hierarchy. This approach covers the common case found when decomposing
the main business goals and eventually arriving at subgoals with a very small scope
as leaf goals. However, GPMN also allows the attachments of plans to goals other
than leaf goals as shorthand alternatives to fulfilling a goal if a condition on the plan
allows for it.

Figure 5.6 demonstrates how this added modeling flexibility can contribute more
concise process models. The figure shows a goal hierarchy which could either be used
stand-alone or as part of a larger goal hierarchy. The root goal of the hierarchy is the
”Provide Components” goal, which expresses that the process aims to make certain
components available to the rest of the process.

The shown hierarchy offers two possibilities to achieve the goal. First, a plan
for simply retrieving the components from the warehouse is available. However, this
plan is guarded by a condition which requires that components be stocked in the
warehouse.

The alternative is a goal subtree that will attempt to purchase the components,
which again has the subgoals of first retrieving offers from suppliers, then ordering

5.4. Comparison of GO-BPMN and GPMN 119

Figure 5.6: GPMN allows the attachment of plans to goals which are not leaf goals,
allowing for additional model flexibility

the components based on the best offer received. The ”Provide Components” goal
therefore has both a plan attached with a plan edge and a subgoal with an activation
edge.

The workflow process treats either one as an option for achieving the main goal,
so if the option to retrieve the components from the warehouse is inhibited by the
precondition that components are unavailable in the warehouse, the process will
activate the ”Purchase Components” goal instead. This allows the workflow designer
to mix and match plans and subgoal hierarchies as required by the workflow.

5.4.3 Goal Deliberation with Suppression Edges

Goals sometimes stand in conflict with each other or an issue needs to be resolve
before other goals can be resumed. For this type of issue when modeling goal-oriented
business processes or workflows, GPMN offers a special visual modeling element
called suppression edges to both semantically and graphically model precedences
between goals.

Figure 5.7 demonstrates the use of suppression edges in a simple example business
process. The main business process consists of the main goal of constructing a shop-
ping mall which is divided into three subgoals: An achieve goal of constructing the
parking lot, an achieve goal of constructing the main building and a maintain goal to
ensure the workers a safe environment. Each of the goals have a plan attached which
works towards accomplishing the attached goal or restoring the maintain condition

120 Chapter 5. Detailed GPMN Semantics and Model Format

Figure 5.7: GPMN offers Suppression edges to temporarily suppress active goals
while a potentially conflicting goal takes precedence

on the maintain goal.
If a safety issue arises, the maintain condition of the maintain goal becomes

invalid and the goal will now be actively pursued in order to restore a safe working
environment. However, while a safe work environment is being restored, work cannot
continue without risking the health of the construction workers.

This is where the suppression edge can assist in modeling such situations: Once
the maintain goal is actively pursued, the suppression edges ensure that the two
achieve goals aimed at the construction work are suppressed. This means that their
plan execution is interrupted while a safe work environment is being restored.

While it is possible to model similar patterns in GO-BPMN solely using the GO-
BPMN goal preconditions, it has a number of disadvantages to the use of suppression
edges:

• Suppression edges are an explicit and graphical element that clearly denote re-
lationships between goals even to non-technical people involved in the process.
Conditions on the other hand are implicitly attached and have to be formulated
by a specialist.

• Goals in GO-BPMN only have preconditions and once committed to the ex-
ecution state cannot be prevented from finishing plan execution. This allows
the initial establishment of a safe work environment but not work stoppage
and recovery once construction has begun. Suppression edges on the other
hand allow the temporary suppression of already actively pursued goals when
it becomes necessary (see also section 5.4.4).

• Suppression edges can be effectively combined with specialized goal kinds like
the maintain goal, which only suppresses the connected goals on violations of

5.4. Comparison of GO-BPMN and GPMN 121

the maintain condition.

As a result, while it is possible to devise a clever use of explicit context variables,
conditions and goal deactivations to achieve a similar sort of effect in GO-BPMN,
it is a technically involved solution which results in the solution being incompre-
hensive to non-technical people. Furthermore, the process context is supposed to
represent the business situation rather than being used as a technical coordination
mechanism between goals and plans. Finally, such a solution essentially disables the
default execution semantics of GO-BPMN and awkwardly replaces it with a custom
implemented semantics.

The next section will discuss the advantages of GPMN’s explicit goal delibera-
tion and means-end reasoning and demonstrates how this helps developing business
process models.

5.4.4 Continuous Goal Deliberation and Means-End Reasoning

GO-BPMN, as a conservative extension of BPMN, follows the task-centered execu-
tion semantics of BPMN, where both goals and plans are treated as a special kind of
BPMN element to be executed. This means once the engine has committed to ”exe-
cuting” a goal, this decision is final and cannot be reverted. This is the reason why
goals in GO-BPMN use preconditions instead of context conditions used by GPMN:
Before a goal is executed, the precondition is checked. Once the precondition is
cleared, the goal becomes active and is pursued until dropped.

This behavior is in contrast to the behavior in GPMN in which context conditions
are used on goals. The context condition itself does not prevent the creation of a goal
instance and therefore the goal immediately reifies as a goal instance and denotes
that the process now has the desire for a certain state, but may be prohibited from
pursuing it due to a context condition. Once the context condition becomes valid,
the goal can be actively pursued. However, should the situation change, the context
condition can become invalid again and the goal will again be temporarily suspended.

With plans, GPMN offers both kinds of conditions, the precondition which can
exclude plans from the initial plan options and the context condition which can cause
an active plan to be aborted, with an optional plan rollback being performed. As
a result, the condition and context handling is somewhat more dynamic in GPMN
when compared to GO-BPMN.

The next section will explain the additional goal kinds available in GPMN com-
pared to GO-BPMN and present some situations where they might be useful and
assist in workflow modeling.

5.4.5 Additional Goal Kinds

Both GPMN and GO-BPMN offer the achieve goal as a goal kind that denotes the
desire to reach a particular state as well as the maintain goal which is used to express
the desire to not only reach but maintain a business state over an extended period of

122 Chapter 5. Detailed GPMN Semantics and Model Format

time. However, GPMN offers two additional goal kinds which are useful for certain
business situations:

• The perform goal, which denotes the simple desire to perform an action re-
gardless of outcome. This goal is usually used in situation where the action is
regularly and repeatedly performed during the process.

• The query goal, which expresses the desire to acquire certain information if the
information is not already available.

While both goal kinds can be emulated in GO-BPMN using the achieve goal kind,
it requires the use of the business context to implement the additional functionality
of these goal kinds, thus introducing technical data into the business context which
is supposed to contain only business information.

Figure 5.8: Example process employing a perform goal

Figure 5.8 shows a simple example process which demonstrates the use of the
perform goal kind. The process consists of two hierarchies, one hierarchy which aims
at producing certain parts using a set of equipment.

The hierarchy for designing parts consists of a sequential achieve goal hierarchy,
with a common main goal aiming to produce parts and a sequential set of subgoals
for designing each part and finalizing their designs. However, since this represents
a long-running process, the equipment used to design each part may need to be
upgraded at regular intervals to maintain the state of the art.

The other hierarchy consists only of a single perform goal which is responsible for
these regular equipment upgrades which uses an upgrade plan attached to the goal
to perform the upgrades. The goal has the retry flag enabled and is configured with
a specific retry delay, causing the workflow engine to retry the plan execution at the
intervals defined by the retry delay. Unlike the achieve goal, however, the perform
goal has no state it aims to achieve.

If an achieve goal were used, the achieve goal is terminated once the achieve
condition is met, which means in practice that the attached plan is only retried once
since its successful execution denotes success for achieve goals without a specific
achieve condition. However, the perform goal has no achieve condition, which results
in this configuration running the upgrade plan regularly due to the retry flag.

5.4. Comparison of GO-BPMN and GPMN 123

The use of the query goal kind on the other hand is demonstrate in the example
shown in Figure 5.9. This sample business process concerns itself with the fulfillment
of a customer order, where the placement of an order is confirmed to the customer,
the order is shipped and finally a confirmation of the order shipment is also sent to
the customer.

Figure 5.9: Example process employing a query goal

The goal hierarchy is split in two branches, one branch to confirm the order to
the customer and the other one to ship the order and notify the customer about
the shipment. Before the customer can be sent the confirmation, however, pertinent
information about the customer such as name and address has to be available. For
this purpose, the query goal kind is used: Before the confirmation e-mail is send, the
query goal ensures that the customer information is available.

Another query goal is used before the shipment notification is send in order to
ensure the availability of the customer information. In fact, both goals share the
same plan to retrieve this information.

However, the advantage of using the query goal is that it only performs a plan
if the information to be queried is not already available. This means that it does
not matter which of the query goals becomes active first since the other one will
terminate successfully if the information is available without issuing an additional
database request.

GPMN therefore offers some additional business process modeling flexibility and
expressiveness in certain situation by offering these additional goal kinds. The next

124 Chapter 5. Detailed GPMN Semantics and Model Format

section will introduce the modeling tools which are used to model both the GPMN
business processes themselves as well as the BPMN fragments that can be used as
GPMN plans.

5.5 Implementation of a GPMN-based Editor Toolset

While it is possible to use business process languages without IT systems by drawing
or specifying business processes on paper, they are typical designed using specific
modeling applications, often as part of a business process or workflow management
system, which supports designing models graphically. This becomes especially rel-
evant if the model should be enhanced with execution detail to become an execute
workflow model.

Figure 5.10: Screenshot of the GPMN Editor which allows a workflow designer to
model GPMN business processes and workflows

If the resulting business model is eventually converted to a workflow model, the
need for such a tool becomes clear since it can automatically generate a workflow
model in a machine-readable format which can be used by a suitable workflow engine
or interpreter.

As a result, two editors for both GPMN and BPMN have been developed to sup-
port modeling the goal-oriented process themselves as well as the BPMN fragments
that implement the GPMN plans (see [81]).

The GPMN editor as shown in Figure 5.10 provides a business process or workflow
designer with the tooling to develop GPMN process models. The user interface is
separated into three parts: The top area contains a toolbar where GPMN design
elements like the four goal types can be selected. It also contains a tool for selecting

5.5. Implementation of a GPMN-based Editor Toolset 125

F
ig
ur
e
5.
11

:
T
he

bu
si
ne
ss

si
de

cl
as
s
hi
er
ar
ch
y
as

us
ed

by
th
e
G
P
M
N

ed
it
or

126 Chapter 5. Detailed GPMN Semantics and Model Format

GPMN elements and a tool for adding waypoints to edges.
The central area contains the GPMN goal hierarchy and plans. This can be used

to add and delete GPMN elements and connect them with edges. Edge connections
can be accomplished by simply dragging a line between two elements. The editor will
then select the right type of edge to be inserted between the elements. For example,
if a line is dragged between two goals, an activation edge is inserted while dragging
a line between goals and plans inserts plan edges.

Since suppression edges are also inserted between goals, a separate tool is available
in the toolbar which, when selected, causes the editor to draw suppression edges
instead of activation edges between goals.

Like the GPMN intermediate and BPMN 2.0 formats, the GPMN editor also
distinguishes between the visual and business aspects of process models with the
business side of the model representing the business semantics of the workflow and
the visual side containing the representation of the graphical elements such as sizes
and positions.

Each graphical element in a GPMN workflow is therefore represented by a visual
and a business object with the visual one holding a reference to their business aspect
counterpart. However, both models represent graphs and therefore contain both
nodes and edges. Since many objects on the business side of the model contain similar
information, the business aspect of the model uses a class hierarchy to minimize
implementation effort as shown in Figure 5.11.

The business side of the model is represented by the GpmnModel class, which
contains all of the semantic elements of a GPMN business process or workflow. The
elements are sorted into a three containers, the context containing the GPMN process
context and two lists, one containing the nodes of the model and another containing
the edges.

The root of the hierarchy for both the node and edge elements is the AbstractEle-
ment class, which denotes any GPMN element which can be added to the GPMN
model aside from context. The class itself is abstract and therefore cannot be used
to create objects by itself. However, it contains the common information held by
both edges and nodes. which both are assigned a unique identifier and a name.

The abstract class AbstractNode represents a node in the model. It holds con-
tainers for all incoming and outgoing edges to the particular node, which simplifies
tasks like identifying the root nodes of the goal hierarchy. In addition, both goals
and plans contain a context condition. While the semantics of both are slightly dif-
ferent, the actual type and value range (Java expressions) are identical. Therefore, in
order to reduce code duplication, the AbstractNode class also manages the context
condition for both plans and goals.

Plans are represented by the Plan class, which inherits the functionality of both
the AbstractNode and AbstractElement classes. It enhances them by adding plan-
specific functionality. This includes setting a precondition for the plan, a feature
which is not available in goals. It also adds a plan references which contains the
path to the implementation of the plan such as a BPMN fragment model or a Java

5.5. Implementation of a GPMN-based Editor Toolset 127

class.
While GPMN currently supports four different goal kinds, the current implemen-

tation of the model represents all of them using the same Goal class. This was done
since the goals share most of their properties. For example, all goals contain cre-
ation, context and drop conditions, which the goal class manages. The only specific
conditions are the target condition and the maintain condition, the former of which
is used by the maintain and achieve goal kind while the latter is used by the maintain
goal kind only.

The current approach is to allow the Goal class to contain all possible conditions
and setting them to a null reference in goal kinds where they do not apply. In
order to allow the distinction between goal kinds, the Goal class simply carries the
information about its kind as data within the class. This also allows relatively quick
conversions of goal kinds even after a goal has been added to the model, however, if
more goal kinds with greater distinctions are added at a later point, differentiating
between goals based on classes with all of them inheriting the basic conditions from
an AbstractGoal class may be warranted.

The edges in GPMN are considered to be directed and therefore contain a well-
defined source and target. Therefore, the base class AbstractEdge which is used to
represent all of the edges in the model contains references to both the source of the
edge, which is the node where the edge originates, and the target, which is a refernce
to the node where the edge ends.

Figure 5.12: Class hierarchy of the GPMN visual model

The AbstractEdge class is then further differentiated in the subclasses Activa-
tionEdge, PlanEdge and SuppressionEdge which differentiate the type of the edge.
Additionally, the activation edge also contains information about the order in case

128 Chapter 5. Detailed GPMN Semantics and Model Format

the source of the edge is a sequential goal.
The last part of the business side of the model is the GPMN context, which is

represented by the context class. Unlike the previous element, the GPMN context
does not have a visual representation and therefore no element that corresponds to
it in the visual model. Only one context is included in each GPMN model, which
in turn is based on a list of elements that are modeled with the ContextElement
class. The ContextElement class then holds the information about each entry in
the context, such as name of the entry, its type and potentially an expression that
produces an initial value for the context entry.

The graphical side of the editor is based on a graphical modeling framework called
JGraphX (see [103]), which help to display and edit graph-based data. As a result,
the visual model of the editor uses the basic graphical element class of the framework
called mxCell as the base class for its hierarchy (see Figure 5.12). The base class for
the visual elements is the VElement class, which primary includes initialization code
that configures the base mxClass element with the settings common to all visual
elements used in GPMN.

Edges are modeled in the visual part of the model using the VEdge class regardless
of the type of underlying edge. This is due to the fact that the visual part of edges
centers around the optional set of waypoints a model designer can add to them which
is identical in function in all edge types.

In contrast, the nodes are first modeled using the abstract VNode class, which
contains the common information about both goals and plans like the location in
the model using x- and y-coordinates as well as a representation of the size of the
object using width and height. Both pieces of data are stored in an object of the
mxGeometry type which can be used directly in the JGraphX framework to display
the node.

However, in order to represent both goals and plans, separate subclasses of the
VNode class are available. While they do not store addition information over the
VNode class itself, they offer functionality to quickly access business information
about the object that is necessary to draw the node without having to acquire the
underlying business object (e.g. objects of the Goal or Plan class) first.

For the VPlan class this includes the plan type, which refers to the option of in-
cluding BPMN fragments and Java-based classes as implementations and is required
to display the terms ”BPMN” or ”Java” in the graphical representation of the object.

The VGoal on the other hand includes accessor methods for acquiring the goal
type to display the correct letter in the top oval of the goal and to chose the right
coloring scheme for the graphical goal as well. Additionally, the VGoal class can also
determine if the underlying business model aspect declares the goal it represents as
a sequential goal. If true, it results in the sequential goal marker being drawn in the
graphical representation.

The GPMN intermediate format presented in section 5.2 is the default storage
format for models designed in the editor. The loading and saving of models is
implemented using an extensible system as shown in Figure 5.13. Since the editor

5.5. Implementation of a GPMN-based Editor Toolset 129

Figure 5.13: Extensible input/output system for the editor to save models in the
GPMN intermediate format (see section 5.2)

may be required to store and load models in different formats, the editor only deals
with the interfaces IGpmnModelReader and IGpmnModelWriter for reading and
writing GPMN models respectively. This approach allows the implementation of
different storage formats by simply providing a reader and writer that implement
those interfaces.

The reader supporting the GPMN intermediate format is implemented as Gpmn-
IntermediateModelReader, while the corresponding writer implementation is called
GpmnIntermediateModelWriter.

While reading the visual part of the model is necessary for displaying the model
in the editor, reading and writing this part is optional with regard to the reading and
writing part since a visual part may not be necessary or even available in alternative
model formats. As a result, the responsibility for reading and writing the visual
part of the model is moved to a separate reader and writer which are represented
in the main reader and writer using their respective interfaces IVisualModelReader
and IVisualModelWriter.

When reading and writing the GPMN intermediate format in the context of
the editor, the implementations used for reading and writing the visual part of the
model are GpmnVisualModelReader and GpmnVisualModelWriter which implement
the interfaces mentioned above.

The visual readers and writers must be created and assigned to the base model

130 Chapter 5. Detailed GPMN Semantics and Model Format

readers and writers if the visual part of the model should be considered which is
then used to assign the field available in both the GpmnIntermediateModelReader
and GpmnIntermediateModelWriter for the visual readers and writers. If this field is
not set, it defaults to the null reference and the visual part of the model is ignored.

This approach also allows the use of alternative readers and writers for the visual
part of the model. The current implementations are based on the visual approach of
the JGraphX framework, however, if an alternative graphical framework is used in
a different tool, an appropriate visual reader and writer can be supplied while still
using the standard reader and writer for the business part of the model.

Since the visual part of the model is simply appended to the format, the interface
for the visual writer is relatively simple, containing only the method writeModel()
which expects the opened stream of the target that is being written which usually
consists of a file. The visual writer is then expected to insert the visual aspects of
the model into the target using the stream. The main writer finishes writing the
model by adding the final tags for the overall model, then closing the stream.

This simple interface is in contrast to the interface of the visual reader. Here, the
main reader will assist in parsing the file and invoking one of the available methods
in the visual reader whenever it encounters the description of such a visual element.

The two methods involving nodes in the graph are processVisualGoal() for pro-
cessing the visual aspects of a goal element and processVisualPlan() for visual aspects
of plan elements. Both receive the corresponding business-side object of the Goal
and Plan type respectively and the position and size of the node.

The processVisualEdge() method is responsible generating the visual edges within
the model. It also receives the business-side object of the type Edge but has to
differentiate between the different type of edges available. Additionally, it optionally
receives a list of waypoints which are used to route the visual edge, overriding the
default routing behavior.

The implementations of the visual readers and writers, GpmnVisualModelReader
and GpmnVisualModelWriter, include a reference to an object of the GpmnGraph
type. This class is a subclass of the mxGraph class from the JGraphX framework,
which is the base class for modeling visual graphs within the framework. When the
visual part of the model is read, the generated visual aspects are directly inserted
into that graph. The writer on the other hand uses this object to extract the visual
information written into the model.

If a GPMN process model uses BPMN fragments to implement plans, it also
requires a tool for modeling such BPMN fragments. The BPMN editor (see Figure
5.14) is structured in a similar fashion to the GPMN editor, separating business and
visual layers of the process model. The implementation currently supports most of
the BPMN elements with defined execution semantics.

Unlike other available BPMN editors such as offered by Eclipse (see [52]) and
Activiti (see [4]), the editor supports extensions that help the models integrate in
the runtime environment used by GPMN and enable additional functionality offered
by the BPMN interpreter offered by that environment (see chapter 6).

5.5. Implementation of a GPMN-based Editor Toolset 131

Figure 5.14: The BPMN editor allows the design of BPMN fragments used as plans
in GPMN process or design standalone BPMN processes

Like its GPMN counterpart, the BPMN editor is also based on the JGraphX
framework and follows the same approach of a separation between the visual and
business part of the business process model. The readers and writers are also split
between a pluggable visual part and a base business part with each being refer-
enced through interfaces. The default, and currently only implementation of both,
currently generates the BPMN 2.0 XML format as defined in [121].

Both editors together allow the creation of GPMN models and associated BPMN
fragments used as plans. The next section will discuss options for executing work-
flows created by those editors and introduce the infrastructure used to implement
the enhanced workflow management system used for dealing with the special require-
ments of long-running autonomous workflows.

132 Chapter 5. Detailed GPMN Semantics and Model Format

Chapter 6

GPMN Workflow Execution

The previous chapter has shown how the Goal-oriented Process Modeling Notation
(GPMN) can be used to design a business process model during the design phase
and, using the editor tools, can be enhanced with plan implementations using the
editor tools to generate a workflow model in the implementation phase.

The next phase in the BPM lifecycle (see section 2.7) deals with the execution
of such workflow models. This phase involves multiple parts including the creation
and actual execution of workflow instances, user interactions typically through the
delivery of work items and interaction with predefined services. As noted in chapter
2.4, this step is part of the responsibilities of a workflow management system.

The creation of workflow instances and their execution is usually accomplished by
a part of a workflow management system called the workflow engine. Since all other
parts of a workflow management system depend on the workflow engine executing
workflow instances, it is the first issue that needs to be addressed to provide the tools
necessary for the execution phase. Additionally, in order to provide the other parts of
the workflow management system and to allow access to other systems involved in the
workflow such as database systems, web servers or machinery, a suitable middleware
is useful to assist the workflow management system to accomplish this task. As a
result, this chapter will deal with both issues by proposing a suitable solution for a
workflow engine and selecting a workable middleware solution for implementing the
remaining parts of the workflow management system.

6.1 Workflow Engines

The execution of workflow instances within a workflow management system is ac-
complished through the use of a workflow engine. The workflow engine is responsible
both for creating runnable workflow instances from the workflow model by providing
a runtime state as well as offering the means to perform the actions specified by the
workflow at the appropriate time during execution.

Implementations of workflow engines usually follow one of two approaches to
execute or enact workflow instances:

• Model Conversion: Before a workflow instance is created, the workflow model

133

134 Chapter 6. GPMN Workflow Execution

is converted to a different model using an available executable language for
which an interpreter is available. This interpreter then provides the workflow
instance with the runtime state and uses the converted model to execute the
workflow.

• Direct Interpretation: The workflow model is directly represented in-memory.
An interpreter capable of executing the language directly, and providing the
runtime state, is used to create and execute the workflow instance.

Model conversion is a common approach for executing BPMN models by first con-
verting the model to a BPEL model, then using an execution environment that
includes a BPEL interpreter to execute the converted BPEL model. Popular im-
plementations supporting this approach include workflow management systems like
the Oracle BPEL Process Manager (see [75]), Microsoft BizTalk (see [74]), Apache
Orchestration Director Engine (see [49]), SAP Exchange Infrastructure (SAP XI, see
[2]) and IBM WebSphere Process Server (see [73]).

The advantage of this approach is that the workflow engine becomes reusable
for different workflow model languages: Each additional modeling language has to
provide a model converter and is then able to use both the engine and infrastructure
already available for the targeted language such as BPEL. Additionally, BPMN 1.0
lacked clearly defined semantics so the conversion to a language with well-defined
execution semantics like BPEL essentially attaches a specific interpretation of the
original language model. Model conversion therefore allows a quick adoption of
alternative interpretation should this become necessary.

The disadvantage is that complex conversions with a focus on execution tend
to lose information about the original workflow model. Consequently, the resulting
BPEL workflow after conversion from a BPMN model may not provide sufficient
information about the original model, thus causing tasks like debugging to become
more difficult since errors occur in the converted model used for execution which
is difficult to link back to specific elements of the model created by the workflow
designer. Additionally, workflow models that allow automated proving of properties
(e.g. petri nets) may invalidate such proofs unless the model converter itself is proven
correct.

The alternative to model conversion is direct interpretation in which the model
and its elements are directly represented in the workflow engine as programming
structures which are then executed by an interpreter capable of interpreting the
workflow language. The advantage is that the association with the original workflow
model remains clear and any event such as errors can be directly associated with
elements in the model.

Conversely, the disadvantage is that the interpreter is specifically developed to
interpret a particular workflow modeling language and cannot easily be reused for
other languages. This generally limits such workflow management systems to a
specific type of language without additional support by other language interpreters.

Nevertheless, with the release of BPMN 2.0, this approach has become popular
in more recent workflow management systems that employ BPMN as the primary

6.1. Workflow Engines 135

language, which often avoid implementing support for BPEL completely. Common
modern examples of this approach include the workflow engines integrated in work-
flow management systems like Activiti (see [4]) which was specifically developed for
this approach and JBoss jBPM (see [90]), which started out with model conversion
but switched to direct BPMN 2.0 interpretation when it became available.

Generally, an interpreter tends to be the more adaptable approach since it is
tailored towards the specific language which helps to include support for more spe-
cialized language features, ensures the integrity of the relationship between a runtime
instance and the business process model. Nevertheless, a model conversion approach
is considerably quicker to implement if an execution engine is already available and
the model language and execution language are reasonably similar.

However, while GO-BPMN is at least adopted specifically as a conservative ex-
tension to BPMN and therefore has similar execution semantics, the additional com-
plexity of GPMN with goal and plan instantiation as well as the goal deliberation
and means-end reasoning cycles would require a non-trivial translation if a workflow
engine for a task-based language is used.

An alternative option would be the use of a rule-based workflow engine. For this
approach, the GPMN intermediate model would be converted to a set of rules which
is then used in a rule engine to achieve the behavior intended by the workflow model.
However, this approach would, aside from the obvious advantage during modeling,
have similar disadvantages to a pure rule-based modeling approach as described in
section 3.9:

• The model itself could be expressed in GPMN. This would reduce the develop-
ment and maintenance difficulties of the rule-based modeling approach, thus
providing an advantage in the modeling part of workflow design.

• It is non-trivial to maintain a connection between converted rules and the
model elements. Therefore, information about the model elements such as
goals is likely to be lost. As a result, strategic-operational cohesion would
become unattainable at runtime.

• As with any model conversion approach, debugging becomes more difficult.
This disadvantage is emphasized by the loss of strategic-operation cohesion.
This disadvantage ties into the issue of testability of rule-based systems raised
by Li (see [101]).

• Monitoring such processes would become harder if the engine is used as part
of a workflow management system.

As a result, conversion to a rule-based system is less than ideal especially considering
the research goals for long-running autonomous processes during runtime. However,
considering the autonomous behavior of the business processes, a promising alterna-
tive is agent technology since software agents are also expected to exhibit autonomous
behavior. Furthermore, a particular agent architecture called Belief-Desire-Intention

136 Chapter 6. GPMN Workflow Execution

(BDI) agents is interesting since it also includes the use of goals similar to goal-
oriented business processes.

The next section will provide a short introduction to agent technology and the
BDI approach, followed by an explanation as to how this approach can be used to
execute GPMN workflows.

6.2 Agent Technology

In the previous chapters, business processes, business process models, workflows
and workflow models were introduced and the goal-oriented language GPMN was
determined to be a good choice for modeling long-running autonomous processes. In
addition to merely executing the resulting workflow models, one also has to consider
the desired autonomous behavior that such workflows are expected to show. This
makes software agents an interesting technology for executing GPMN workflows since
it shares similar goals in this regard.

In this section, the concept of software agents is introduced, its relationship with
long-running autonomous business processes is highlighted and the specific technol-
ogy of BDI (Belief-Desire-Intention) approach is explained in greater detail since it
offers a solution for executing long-running autonomous processes that is particularly
suited to workflow models design in the GPMN workflow language.

6.2.1 Definition of Agents

Definitions of agents in general and software agents as agents that are part of a soft-
ware system vary greatly and a vast number of different types of software agents have
been proposed. As such, there is no rigorous and generally agreed-upon definition
of software agents. Nevertheless, a number of themes and agreement on certain as-
pects of software agents can be derived from literature and convey a soft but general
sense of the nature of software agents by providing a number of possible properties
of entities that result in it to be considered a software agent. A number of different
views on the term ”software agent” are discussed by Frankling and Graesser in [54].

Despite the diversity of views on software agents, a number of attempts to define
software agents are available. One of the more widely accepted definition of an
autonomous agent is offered by Maes in [106]:

Autonomous agents are computational systems that inhabit some
complex, dynamic environment, sense and act autonomously in this en-
vironment, and by doing so realize a set of goals or tasks for which they
are designed.

Here, the emphasis is on three aspects; the autonomous actions of the agent, a
dynamic environment and its interaction with this environment, which are potentiall
useful properties for long-running, autonomous business process as well since they
also necessitate autonomy and need to interact with a (business) environment.

6.2. Agent Technology 137

This view on agents is also supported by possibly the most widely accepted
definition an agent by Woolridge and Jennings in [91] and in [163]:

An agent is a computer system that is situated in some environment,
and that is capable of autonomous action in this environment in order to
meet its design objectives.

Again the definition emphasizes the autonomy of the agent and an environment in
which the agent can interact, however, the definition of the environment is slightly
more open and undefined. It also omits the obligations to realize goals and tasks,
making this definition more general but also less clear. However, due to being more
inclusive, this definition was also used as the basis for the definition used in [104]:

An agent is a computer program capable of flexible and autonomous
action in a dynamic environment, usually an environment containing
other agents.

In this definition, the capability of the agent’s actions include flexibility, another
property desirable for long-running, autonomous business processes. In addition,
this definition also notes that it is common for a system to include multiple agents.
These sorts of systems are called multi-agent systems and are defined by allowing
multiple separate agents to interact with the environment (see [163] and [138].

Most widely accepted definitions contain the two aspects of an independent sys-
tem, called the agent, capable of autonomous action and an environment which this
system can affect. These aspects are also present in [105], [65] and [138].

Additional properties agents can have which are relevant in the context of this
work, but are not necessarily a property of all types of agents, can be found in[115].
Here, agent can be considered either to be reactive or deliberative. Reactive agents
only perform actions based on some external triggers. These can be both triggers
based on perceived changes in the environment or perceived actions performed by
other agents.

The reaction can either be predictable and repeatable if the trigger is repeated,
or they can differ for each trigger event, even if the trigger itself is identical. The
latter requires more sophistication on part of the agent and necessitates an internal
state (see also [138]); however, agents with such a behavior are still considered to be
reactive.

In contrast, agents can also be deliberative. This means that, unlike reactive
agents, they do not depend on external triggers but can take a proactive role which
allows the agent to initiate actions by itself based on its internal state without an
external trigger being perceived by the agent.

For this behavior to be meaningful, agents are often motivated by an internal ob-
jective or goal. These type of agents are call goal-oriented, since they have internal
goals which they pursue and use to decide on the action they are performing. Similar
to the more sophisticated reactive agents, deliberative and goal-oriented agents usu-
ally maintain an internal state. This state may not only include their own internal

138 Chapter 6. GPMN Workflow Execution

properties but can also contain a model of the environment and defined goals to help
them plan their actions (see also [96]).

Wooldridge and Jennings, while also noting the difficulty in defining agents, pro-
vide the following properties to clarify the notion of agents (from [164]) and define
some core properties of agents:

• autonomy : agents operate without the direct intervention of humans or others,
and have some kind of control over their actions and internal state [32];

• social ability : agents interact with other agents (and possibly humans) via
some kind of agent-communication language [56];

• reactivity : agents perceive their environment (which may be the natural world,
a user through a graphical user interface, a collection of other agents, the
Internet, or perhaps all of these combined), and respond in a timely fashion to
changes that occur in it;

• pro-activeness: agents do not simply act in response to their environment, they
are able to exhibit goal-directed behaviour by taking the initiative.

In addition, both Wooldridge [163] and Russel et al. [138] give some properties
regarding the environment. The first property is the accessibility of the environment.
Accessibility is the degree in which an agent can perceive changes in the environment.
In order for an agent to interact meaningfully with its environment, at least some
changes such as changing states or exchange of messages must be perceivable by the
agent.

However, the perception of the environment by the agent does not necessarily
have to be complete or encompass the full state of the environment. The perception
can be limited to a subset of the environment. For example, an agent representing
an animal in a simulated physical environment may be limited in its perception
to a certain distance and angle. By limiting the agent’s perception in such a way
and developing the agent based on such restrictions, the behavior of the agent may
resemble the targeted behavior more closely.

Another environmental property is the question whether the state of the environ-
ment is deterministic. An environment is considered to be deterministic if changes
to its state can be predicted by the agent. This includes environments where the
agent affects the environment but is able to predict the influence of its own action on
the environment. Non-deterministic environments are environments that are either
influenced by changes outside the agent or if the results of actions performed by the
agent cannot be predicted.

A property which is in partial contradiction to the definition by Maes in [106],
environments can be either static and dynamic. Static environment do not experience
state changes unless acted upon by the agent. Dynamic environments, on the other
hand, can change regardless of the actions of the agent. This results in certain
interdependencies with other properties.

6.2. Agent Technology 139

For example, a multi-agent system filled with non-trivial agents will cause an
environment to become dynamic, since the behavior of other agents cannot be pre-
dicted by any particular agent since their behavior is autonomous. The exception
to this is a system with simple reactive agents without an internal state, except, at
most, one more complex agent, because that agent could predict the behavior of the
trivial reactive agents.

This also highlights how the determinism of the environment depends on the
perception of a particular agent in multi-agent systems: The environment described
above is deterministic for the agent able to predict the behavior of the trivial reactive
agents, but it is non-deterministic for the reactive agents since they cannot predict
the behavior of the more complex agent.

In addition, a deterministic environment tends to also be static, since the only
deterministic and dynamic environment is only possible if the dynamic behavior of
the environment is entirely predictable by the agent. Similar to the example above,
this is only the case if the dynamic behavior of the environment is trivial.

As a result of most dynamic environments being non-deterministic, the behavior
of the overall system results in increased overall complexity and greater difficulty in
predicting its actions. It is therefore harder for a system designer to plan in advance,
resulting in greater design complexity for development. In addition, it often prohibits
analytical behavior analysis and increased effort for validating system behaviors.

6.2.2 Agents in Software Development

Software agents are an approach for perceiving systems or part of systems. In par-
ticular, a software agent is a piece of software that is regarded as having a certain
degree of independence or autonomy to decide or act by itself rather than behav-
ing like a simple object as used in typical object-oriented software development (see
[69]), blindly and mechanically performing based on external input.

However, this is merely a choice by a developer to perceive and consequently treat
a system in such a manner because it is useful to them in the context of his work and
helps them to represent real world or abstract concepts in software. By itself, it does
not offer any technical advantage over other approaches such as object-orientation,
i.e. any software system can be developed with either technique, but both convey
development advantages in particular contexts.

This view of agents as merely a point of view is supported by Shoham in [145]
as follows:

It is perfectly coherent to treat a light switch as a (very cooperative)
agent with the capability of transmitting current at will, who invariably
transmits current when it believes that we want it transmitted and not
otherwise; flicking the switch is simply our way of communicating our
desires.

This example shows that even a relatively primitive mechanical object can be per-
ceived as an agent, despite the fact that it is more natural to view a light switch as

140 Chapter 6. GPMN Workflow Execution

a fairly primitive mechanism since its capabilities of autonomous action is quite lim-
ited, though one could interpret a mechanical fault in the light switch as the agent’s
refusal to perform its function. Shoham argues in [145]:

[...] it does not buy us anything, since we essentially understand the
mechanism sufficiently to have a simpler, mechanistic description of its
behaviour.

In fact, it can be argued that this interpretation is actually harmful in that it actively
impedes the resolution of potential problems: Interpreting a faulty light switch as
an agent refusing to conduct current in contradiction to a request offers no useful
recourse to the fault, since there is no way to ”persuade” or ”negotiate” with the
agent in a manner that will result in it to change its behavior.

In contrast, interpreting the malfunctioning light switch as a simple mechanism
intuitively provides an option to remedy the lack of functionality by identifying the
flaw in the mechanism and perform physical changes to it to restore function.

As a result, since agent-oriented development does not add actual capabilities to
the system itself, it should be regarded as ”yet another tool” for the developer to
employ. Perceiving a system as an agent or multi-agent system during development
is only useful to the extend that it aids the developer to design and implement the
system. If it helps a system designer to think about the system in a manner that eases
understanding, it should be used. If a different approach, such as object-orientation
presents itself as more suitable, it should be preferred.

6.2.3 Agent Architectures and BDI Agents

While the previous segment gave an introduction to agent theories, which attempts
to give a specification of what an agent is and what properties define it and how to
reason about them, this section will give a brief overview of agent architectures (cf.
[164] and [144]).

Agent architectures attempt to provide a path to turn agent theories into a prac-
tical implementation of agents. Since the goal is to implement the desired properties
of agents derived from agent theories, this includes the question of how to struc-
ture agents in order to best fulfill those properties. In case of software agents, this
addresses the software architecture of the agents.

Specific implementations of agent architectures often also specify an agent lan-
guage. The agent language specifies how an agent is to be programmed, i.e. which
language primitives are used to describe the agent and the agent’s behavior and
provides a path for executing agents such as compilation or interpretation.

Since there is no universally accepted definition of what an agent is (cf. section
6.2.1), a large variety of agent architectures, accompanying languages, frameworks
and execution platforms have been developed and described in literature.

Of the available agent architectures, the Belief-Desire-Intention (BDI) approach
appears promising for the execution of GPMN workflow models since it contains a
notion of goals similar to the one used in the goal-oriented GPMN workflow models.

6.2. Agent Technology 141

BDI theory was first approached by Bratman (see [17]) as a means for describing
the rational behavior of human agents. Rather than an approach emulating the
emergence of rational behavior from a biologically inspired model, BDI uses abstract
and mentalistic concepts to describe rational reasoning. The approach chosen for
this offers three major concepts used to describe rational behavior as follows:

• Beliefs describe the knowledge an agent has about the world. Since this knowl-
edge is usually acquired by the agent itself, beliefs may not be an accurate,
current and complete representation of the world. The agent also assumes that
all of the acquired beliefs are true. If new information becomes available, the
beliefs may be changed to reflect this circumstance. Uncertain knowledge with
probabilities are not modeled in this approach.

• Desires represent states of either the agent or its environment which the agent
considers to be advantageous and is willing to work towards achieving them.
Multiple desires of an agent merely have to represent desirable states for the
agent with no consistency between them being required. It is completely ac-
ceptable for an agent to hold contradicting desires.

• Intention include all the actions that an agent has currently committed to
performing in the future in order to affect changes towards the desires. This
concept is more concrete than the desires in that it does not merely describe
the target but the path towards it. Bratman includes in this the concept of
plans which describe a set of actions that represent a step towards carrying out
an intention and therefore may be part of a partial solution for the whole.

BDI follows a reasoning cycle which, similar to GPMN, is divided in two steps,
deliberation between the desires and means-end reasoning to determine the intention.
Deliberation is necessary in order to resolve conflicts between conflicting desires
since the intent must not contain contradictory action. This is due to the fact that
executing contradictory actions leads to cyclic and erratic actions which represent
an irrational behavior that stands in opposition of the goal of rational reasoning.

Once the deliberation cycle resolves conflicting desires, means-end reasoning is
used to find a rational solution for reaching the desires. As a result, the means-end
reasoning determines the intention by evaluating the available actions with regard
to the desires resulting from the deliberation cycle.

Since BDI lends itself towards an easily intelligible yet reasonably complex model
for reasoning and rational behavior, BDI theory was adopted by multiple software
agent platforms which use this approach as the basis for their respective agent archi-
tectures. Recent examples of such platforms include e.g. JACK Intelligent Agents
(see [71]), Jason using the AgentSpeak language (see [16] and [15]), BDI4JADE (see
[117]) as an extension to the more basic JADE agent architecture (see [8] and [9])
and Jadex (see [18], [133] and [22]).

Most BDI software agent platforms implement BDI theory as part of an agent
model with an execution semantic which includes the following concepts to represent
the BDI ideas:

142 Chapter 6. GPMN Workflow Execution

• The belief base represents the agglomeration of the beliefs of the agents in the
sense of the beliefs in BDI theory. This concept is usually implemented as a
typed data store.

• The desires of BDI theory are expressed on BDI software agent platforms as
goals with configurable interrelations and conditions.

• Finally, intention is not usually explicitely expressed. Instead, intention is im-
plemented by plans which fulfill the same role as the plans defined by Bratman
by representing steps towards or parts of a whole intention.

As a result of the use of similar concepts such as the autonomy of agents and specific
BDI aspects such as goals, the BDI approach represents a good target of a model
conversion approach towards executing GPMN workflow models and thus the agent
platform itself could serve both as a middleware and an execution environment as
well as a workflow engine for GPMN workflows.

For the implementation of the model conversion, the Jadex platform with its BDI
execution semantic was chosen as the targeted execution engine. In terms of BDI ex-
ecution, there is no particular reason for a particular BDI platform. However, Jadex
also offers alternative pluggable execution semantics as part of its active component
model (see [127]and [128]) which also includes a BPMN interpreter for executing
BPMN 2.0 compatible workflows. Since BPMN is easier to understand for workflow
designers, it is desirable to have a BPMN interpreter available in order to allow the
execution of plans implemented in BPMN as part of the overall GPMN workflow.

Additionally, Jadex conveys certain advantages as a middleware platform which
helps to implement a workflow management system that offers better support for
long-running autonomous workflows as further discussed in chapters 7 and 8.

6.3 Jadex BDI Agents

The Jadex Active Components platforms offers a number of different agent archi-
tectures and other interal architectures by including plugins called kernels, which
provide the execution semantics for these architectures. Among those kernels in-
cluded in Jadex, two are interesting options for executing GPMN workflows: First,
the BPMN kernel which comes with a BPMN 2.0 model loader and a BPMN inter-
preter for executing BPMN workflows. Second, the BDI kernel which can execute
BDI agents, which has an execution semantic (see [130]) that could be used as an
engine for the GPMN workflow models.

When performing the deliberation cycle, BDI systems must follow a strategy
which cannot be overly complex if the deliberation is to be done in realtime. Jadex
offers a realtime approach as its deliberation strategy for goals called easy delibera-
tion, which allows the definition of constraints in the model which the deliberation
cycle can follow to determine viable goals (see [129]). The main constraints avail-
ble are constraints on cardinality which acts on the created goal instance and goal
inhibitions, which declares a goal to be inhibited by another goal.

6.3. Jadex BDI Agents 143

Figure 6.1: Goal life cycle as used by the Jadex BDI kernel (from [129])

Jadex follows a life cycle for goal instances as shown in Figure 6.1). In this life
cycle, goal instances are first created and then adopted based on a trigger (e.g. a
creation condition), after which this goal instance is included as part of the set of
adopted goal instances. Once a goal instance is adopted, it can enter three different
states.

When a goal is first adopted, it enters the option state, which means that the
goal is not restricted and is available to be considered during goal deliberation. If
the deliberation cycle selects a goal instance, it enters the active state in which the
agent will actively use means-end reasoning to reach the goal. If the goal instance
reaches its desired state, it terminates. A deliberation cycle can also remove the
active state from a goal and return it to the pool of goals in the option state.

If a goal instance becomes restricted, for example because its context condition
becomes invalid, the goal enters the suspended state. While suspended, the goal does
not participate in the deliberation cycle until the reason for the suspension disappears
such as the context condition becoming valid again. However, even if the goal was
in the active state when it was suspended, it will first enter the option state again
and must be subsequently reselected by the deliberation cycle before it can enter the
active state again. Finally, if the drop condition of a goal instance evaluates to true,
the goal instance immediately terminates. This happens regardless of the state it is
in while it is still adopted, including being in the active state.

During the active state, the means-end reasoning cycle is used to determine plans
that can be executed to reach the goal. Plans can be declared in the BDI agent model
and are associated with goals by including a plan trigger referring to a goal. Plans
can be reused by multiple goals by including multiple triggers.

By default the means-end reasoning in Jadex is straightforward: Associated plans
are executed in declared order until the goal is reached. Plans can therefore con-
tribute partial solutions which will be completed by another plan. Alternatively,
all associated plans can be executed in parallel. Furthermore, Jadex offers meta-

144 Chapter 6. GPMN Workflow Execution

level goals to modify and extend the means-end reasoning cycle, however, they are
currently not used by GPMN.

A plan which is currently being executed can be aborted at any time. For ex-
ample, if a goal has been reached, it is no longer necessary to execute the associated
plans and they are terminated. Naturally, this also applies if a goal has conclusively
failed. Failure by plans on the other hand are considered to be normal and the next
plan is tried if one has failed without the goal itself failing. Plans can also be retried
if configured in such a manner.

Plan execution is also terminated while the goal instance is still adopted. Since
plans are only allowed to be executed while a goal instance is in the active state. If
the deliberation cycle deactivates the goal instance and it enters the option state or
if the goal becomes restricted and is suspended, all plans associated with that goal
instance that are currently executing are aborted. The abortion of plans is facilitated
further by allowing plans to include actions that are executed in case a plan aborts,
thus allowing the plan to perform a rollback.

The next section will provide the concept and implementation details for convert-
ing the GPMN workflow models into Jadex BDI agents and matching up the Jadex
BDI semantics with the GPMN approach for workflow execution using the GPMN
editor previously described in section 5.5 as a key element for this process.

6.4 GPMN Model Conversion to BDI Agents

In order to execute GPMN workflow models as Jadex BDI agents, the model has
to be converted to the Jadex BDI agent model format. The Jadex BDI format, like
GPMN, is based on XML but is geared more towards modeling BDI agents rather
than goal-oriented workflows and includes concept currently not supported by GPMN
such as meta-goals. However, Jadex BDI agents use similar concepts to GPMN and
uses two reasoning cycles to determine the actions a particular agent executes and
therefore would represent a good execution platform for GPMN workflows as well.

Two conversion directions could be performed, converting GPMN workflows to
Jadex BDI agents or converting Jadex BDI agents to GPMN workflows. The former
is necessary for workflow execution, the latter would only be useful if modifications
are performed on the BDI agent after conversion and a round-trip engineering cycle
needs to be established. Since modeling of workflows is expected to be performed on
the GPMN level 1and the primary goal is to execute GPMN workflows and consid-
ering the fact that Jadex BDI agents include concepts that cannot be represented in
GPMN, the focus will be on the conversion of workflows to agents.

Figure 6.2 is the conversion chart used to convert GPMN workflow models to
Jadex BDI agent models. The first concept that needs to be converted is the GPMN
workflow context. The context represents the business situation as well as the work-
flow state. Provided the runtime system will supply the agent with current infor-
mation about the business environment, the workflow context can be represented in
the BDI agent as its belief base with individual context entries being the beliefs or

6.4. GPMN Model Conversion to BDI Agents 145

Legend

Context Belief Base

Context
Element

Belief / Belief Set

Goal Goal

Plan Plan

Activation
Edge

Activation
Plan

Plan
Edge

Plan
Trigger

Suppression
Edge

Goal
Inhibition

Jadex
BDI Element

GPMN
Element

Figure 6.2: Model conversion chart for converting the elements of a GPMN workflow
model to a Jadex BDI agent model

belief sets of the agent.
Goals in GPMN workflows can be represented directly as goals of the BDI agents.

As with GPMN, multiple goal kinds are available (see [23]), including goal kinds
matching the ones used in GPMN workflows. GPMN plans can be implemented
as plans in the BDI agents. In Jadex, plans for BDI agents reference Java classes
containing the code implementation of the plan, so an extension is necessary to
support referencing BPMN fragments as plans (see section 6.5).

Figure 6.3: Declaration of a trigger for a plan, referencing a simultaneously declared
”alarm” goal

Plans in GPMN are attached to goals using plan edges, however, Jadex BDI
agents are not graph models and therefore do not include edges as a concept. Instead,
plans refer to goals by including plan triggers with a reference to the name of the
goal in the declaration of the plan itself (see Figure 6.3). Multiple references can be
included in the plan declaration, allowing reuse of the plan for multiple goals, the
same of which can be achieved in GPMN by connecting a single plan with multiple
goals using multiple plan edges. Therefore, plan triggers are, despite being single-

146 Chapter 6. GPMN Workflow Execution

lined references instead of edges, capable of representing the plan edges of GPMN
workflows.

Figure 6.4: Declaration of a maintain goal with three inhibition references (from
[129])

Suppression edges in GPMN indicate which goals may suppress other goals dur-
ing goal deliberation by forming an edge connection in the model. In Jadex BDI
agents, the same effect can be reached by including an inhibition reference with the
declaration (see Figure 6.4) of the goal that needs to suppress other goals in the
GPMN model. Therefore, for each outgoing suppression edge, the declaration of
the source goal has to include an inhibition reference to the target goal. If multiple
outgoing suppression edges are present, multiple inhibition declarations are required.

The final GPMN concept, activation edges involves a more complex solution to
implement using Jadex BDI agents. In GPMN, activation edges are directed edges
which form a direct connection between goals, indicating that a goal activates the
connected goals as subgoals. For this, two kinds of semantics are available: The
default behavior is to activate all of the subgoals at once, pursuing them in parallel.
As an alternative, GPMN allows an activating goal to be declared as a sequential
goal, in which its subgoals are activated in an order depending on declared order
values annotated on the activation edges.

This GPMN concept has no close equivalent in BDI agents. In fact, BDI agents
do not allow the referral of goals from other goals at all. While plans are capable of
activating goals both as top level goals or as subgoals by calling a library method,
goals include no executable code on their own and are therefore incapable of directly
activating subgoals. Therefore, when constructing goal hierarchies with subgoals
as modeled in GPMN, BDI agents require the implementing developer to alternate
between goals which trigger plans which in turn can activate subgoals. The goal
activation semantic in Jadex BDI agents is therefore part of the business logic of
the agents rather than an innate feature like the activation edges and sequential and
parallel goal types used in GPMN.

As a result, when converting from a GPMN workflow to a BDI agent model, an
activation plan must be injected between the top goal and its connected subgoals
which explicitly activates the subgoals by calling the library method. Since this plan
only has a limited functionality, it can be provided as a technical feature by the
conversion process.

The plan can be included as part of the support library for GPMN workflows for
Jadex and is prewritten with the necessary goal activation semantic as defined by

6.5. Implementation Aspects of GPMN Workflow Execution147

the GPMN activation edges. Since the plan is provided by the library, the workflow
designer is not required to provide any code.

The next section provides details about the implementation of the model conver-
sion and execution of GPMN workflows as Jadex BDI agents. The resulting solution
will provide the workflow engine for GPMN processes and a platform for the imple-
mentation of the rest of the workflow management system.

6.5 Implementation Aspects of GPMN Workflow Execu-
tion

The previous section demonstrated that GPMN workflow models can be converted
to Jadex BDI agents by transforming the GPMN workflow elements into elements
of BDI agents in order to use the BDI reasoning system as the workflow engine for
such processes. When considering the implementation of a model conversion process,
the first issue that arises is the question of where the conversion process should be
performed.

The conversion of GPMN workflow to Jadex BDI agents can be accomplished
in two different parts of the system: The GPMN workflow editor could perform the
conversion process and provide an executable Jadex BDI agent which can be executed
directly using Jadex. Alternatively, Jadex could be provided with an additional
kernel which reads a GPMN intermediate model XML file and converts it to a Jadex
BDI agent before execution.

In this case, performing the conversion process as part of the editor conveys some
advantages over conversion of the workflow model as part of the execution platform:

• Model conversion as part of the editor introduces a clear boundary and divi-
sion of responsibilities between the editor and Jadex as the execution platform:
The editor handles the workflow-related details and then prepares a suitable
executable model to Jadex. This also lets the editor alert the right person,
the workflow designer, should issues arise during the conversion process. If the
conversion is performed as part of the loading process before execution, not
only can this be confusing to users by requesting the execution of a workflow
resulting in an executing BDI agent, but the workflow management system ad-
ministrator is unlikely to know enough model details to correct any conversion
issues.

• The editor provides a pluggable reader/writer architecture that allows a special
writer to be implemented which performs the conversion process by writing a
Jadex BDI agent model output. While Jadex also offers pluggable extensions
for providing additional component functionality called ”kernels”, this option
is technically more involved than the implementation of a writer plugin for the
editor.

• Performing the conversion within the editor is akin to ahead-of-time compi-
lation of a program and offers a similar advantage: Once the conversion is

148 Chapter 6. GPMN Workflow Execution

performed, the runtime system can immediately begin executing instead of
first performing the conversion process, possibly for each new instance of the
process. A caching mechanism could prevent multiple conversions of the same
model but at the cost of memory. These issues are avoided altogether by in-
cluding the conversion in the editor.

Therefore, the model conversion has been implemented as part of the GPMN editor
(see section 5.5) by implementing another model writer using the writer interface as
shown in Figure 5.13. Since Jadex BDI agents do not include a graphical represen-
tation, no visual model writer was implemented and it defaults no a null reference,
which means that the visual part of the model is omitted.

Figure 6.5: Plan body of the standard GPMN activation plan used by Jadex BDI
agents to emulate GPMN goal activation semantics

The writer receives the GPMN business-side model as shown in Figure 5.11,
then using this model to write an equivalent model of a Jadex BDI agent in XML
using the conversion mapping shown in the previous section and Figure 6.2. While an
implementation of a BDI agent model reader could be useful for roundtrip engineering
purposes, the user of the system is not expected to change the converted BDI model;
therefore no roundtrip engineering is necessary. Furthermore, the BDI agent model
can include elements like meta goals which have no equivalent representation in
GPMN, making a reverse conversion only applicable in some circumstances. As a
result, the implementation of an equivalent BDI agent model reader was omitted,
allowing only the export but not the import of BDI agent models from the GPMN
workflow editor.

6.5. Implementation Aspects of GPMN Workflow Execution149

As mentioned in section 6.4, the default BDI agent model does not offer an equiv-
alent for the GPMN activation edge or the parallel and sequential goal semantics,
both of which requires the injection of a technical element called activation plan to
perform the necessary goal activations.

The activation plan was implemented and included in a support library and can
be referenced by the model writer during the conversion process. Figure 6.5 shows
the body of this activation plan. The plan is configurable both regarding the goals
it needs to activate as well as the parallel or sequential semantics of its top goal.

This difference in semantics is addressed by offering two cases within the plan,
the parallel and the sequential case. In the parallel case, all subgoals are dispatched
in a for-loop. A second for-loop ensures that all goals have finished before ending the
execution of the plan. In contrast, in the sequential case, each subgoal is dispatched
only after the previous one has finished, so that only one goal is dispatched at any
given time.

Finally, the BDI kernel in its original state could only support plans implemented
in Java the same way that the activation plan was implemented while GPMN pro-
cesses also call for support of plans that are implemented using BPMN workflow
fragments. While Jadex includes a BPMN kernel for executing BPMN workflows,
this kernel is distinct from the BDI kernel used to execute BDI agents.

Therefore, it was necessary to extend the BDI kernel in order to support the use
of BPMN workflow fragments as an alternative to the standard Java implementation
of plans. This was accomplished by using the BPMN interpreter available as part
of the BPMN kernel and calling it if the referenced plan in a BDI agent is a BPMN
workflow model.

Figure 6.6: Approach for executing GPMN processes in Jadex based on model con-
version and the available BPMN and BDI engines

The resulting system (see Figure 6.6) allows the creation of GPMN business
process and BPMN workflow fragments as plans using the editors as shown in section
5.5. The BPMN workflow fragments used as plans are saved as a normal BPMN 2.0

150 Chapter 6. GPMN Workflow Execution

workflow model using the BPMN editor. The GPMN goal hierarchy model should
first be saved as an intermediate model in order to allow change at a later point, then
exported as a Jadex BDI agent model using the export functionality provided by the
BDI model writer for execution. The resulting BDI agent together with the BPMN
fragments then represent the GPMN workflow on the Jadex execution platform.

Chapter 7

Requirements for a Distributed
Workflow Management System

The previous chapter described how goal-oriented business processes and workflow
modeling can improve the design and implementation phase of the business process
management lifecycle for long-running autonomous processes and a flexible goal-
oriented business process and workflow modeling language called GPMN was pro-
posed. Furthermore, it was demonstrated how GPMN workflows can be executed by
performing a model conversion to a Jadex BDI agent model and using the resulting
BDI agent as a representative for the workflow, thus effectively creating a workflow
engine for such processes.

However, the mere execution of workflows is insufficient for non-trivial business
processes since additional infrastructure is necessary to properly include and auto-
mate the business environment of the processes including forwarding tasks for human
users to the right workflow participants as part of the execution phase of the BPM
lifecycle. Additionally, the monitoring phase also requires support for various tasks
such as event processing and logging. This infrastructure, of which the workflow
engine executing the workflow instance is considered to be a vital part, is called the
workflow management system (see also section 2.6).

This chapter will introduce the necessary infrastructure that forms a workflow
management system for long-running autonomous business processes. The system
participates in both the execution and monitoring phase of the BPM lifecycle and
therefore has to address the research goals for those phases set out in section 1.2.

7.1 Execution Platform and Service-oriented
Middleware

As defined in section 2.7, workflows represent the automated part of a business
process. However, business processes are also required to interact with the outside
world, for example, with departments or competency centers providing services to
the workflow and with customers as shown in section 2.1.

In the previous chapter, the workflow engine for GPMN workflows was introduced

151

152
Chapter 7. Requirements for a Distributed Workflow

Management System

by combining the modeling tools with the Jadex BDI and BPMN engines but since
real world interaction is necessary, executing workflows on a suitable workflow engine
is insufficient since the workflows must have a way to communicate with the business
environment.

Since the departments or competency centers of organizations are spatially dis-
tributed, this interaction necessarily requires the use of some sort of distributed
system which allows the workflow engine to communicate with client nodes and ma-
chinery over a wide area. Generally, two possible types of infrastructure are possible
with one having two common options of implementation:

• Centralized workflow management using a central server executing workflows
with workflow participants accessing the system through e.g. a web interface.
This approach is fairly limited, for example, the workflows cannot access ma-
chinery or other systems directly without human mediators.

• A service-oriented architecture as introduced in section 2.8. While the workflow
is executing, it has the opportunity to call services as part of the service-
oriented architecture. Interactions with external systems are done through
those service calls which is also used to issue tasks to human participants of
the workflow.

Due to its limitations, the first approach fell out of use, since it is often highly
desirable to include legacy systems and machinery in workflows which makes such
an approach non-viable. As a result, for most modern implementations a SOA-based
approach is chosen, often based on either WSDL- or REST-based web services.

7.2 Workflow Management Systems

As defined in section 2.6, workflow management systems encompass the tools neces-
sary to enact automated business processes or fractions of business processes called
workflows and aid their execution. While this includes the means for executing work-
flows using workflow engines, other components are necessary to adequately support
workflows in a business environment.

Many tasks performed by workflows such as notifying workflow participants of
labor that needs to be performed as well as documenting results and data from
that labor tend to be required in a variety of business environments. As a result,
most workflow management systems offer a similar set of features. In order to raise
awareness of these common features, the Workflow Management Coalition (WfMC)
has standardized a workflow management system reference model shown in Figure
7.1 (see also [68]).

The reference model itself does not prescribe any particular technology or ar-
chitecture to implement it. Instead it defines a set of features and tools that are
necessary to implement a workflow management system in any suitable technology
stack. The core of a workflow management system based on the reference model are
the workflow engines, which have the job of executing workflow instances based on

7.2. Workflow Management Systems 153

Figure 7.1: Workflow management system reference model as proposed by the work-
flow management coalition (see [68])

previously designed workflow models. Multiple engines may be available to support
different kinds of workflow models. Surrounding the workflow engines is the workflow
enactment service, which helps to enact the workflow instances by maintaining a set
of available workflow models, creating the workflow instances and assisting the rest
of the workflow management system to interact with the workflows.

This interaction of the workflow management system is based on five different
interfaces:

• Interface 1 is the process definition interface, which allows the import and ex-
port of workflow models. When a new workflow model is created using the
process definition tools (e.g. the GPMN editor), this interface allows the inte-
gration of that model into the system and enables the enactment of instances
based on this model. It also allows the removal of old or deprecated models in
the system.

• Interface 2 represents the workflow client interface. When human workflow
participants have to perform a particular task, for example if such a task is
defined as a BPMN activity (see section 3.7), this task has to be brought to the
attention to the person who is supposed to perform the task. When a task that
requires a human participant is executed in a workflow instance, this creates a
work item which includes a description of the task and needs to be distributed
to the person capable of performing it. Typically, workflow participants use an
application called a workflow client application which accesses this interface to
retrieve such work items from a worklist offered by the workflow management
system.

154
Chapter 7. Requirements for a Distributed Workflow

Management System

• Occasionally, workflow tasks are performed by machines which do not use a
workflow client application or the human participant such as machines in an
assembly line or the workflow uses a legacy applications that do not integrate
into the workflow management system as part of interface 2. For these cases,
interface 3 is used to allow the workflow instances to communicate either with
such machines or a wrapper around the legacy application. In many workflow
management system, this interface are the typical web services that are called
by the workflow.

• Depending on their requirements, organizations may deploy multiple workflow
management systems, each with their own workflow enactment service. Al-
ternatively, there may be a desire for multiple organizations to integrate their
systems to further cooperation. Furthermore, multiple instance of the enact-
ment system may be desirable in order to distribute the load when a large
number of workflows are enacted. Interface 4 facilitates the interoperability
between multiple workflow enactment systems, which can also include differ-
ent workflow engines to enable additional workflow model types. In many
system, this interaction is also performed using web services.

• Handling the workflow participants requires a user management that defines
user accounts and roles. Furthermore, some workflows may require manual
enactment or detailed management such as the retractions of tasks from an
temporarily unavailable participants may be required. Finally, the monitoring
phase of the business process management lifecycle stands in need of a system
for monitoring workflow instances which then needs to be presented, analyzed
and logged by administrative employees. Interface 5, the administrative in-
terface, allows these types of administrative interaction with the system using
administration and monitoring tools.

The workflow management system reference model sets the baseline of what is re-
quired by a workflow management system. However, long-running autonomous busi-
ness processes have their own special requirements regarding their execution which
also affect the workflow management system (see section 1.2). Therefore, the next
section will outline the requirements for a workflow management system which at-
tempts to meet these requirements in addition to the baseline set by the workflow
management system reference model.

7.3 Requirements of a WorkflowManagement System for
Long-running Autonomous Processes

The workflow management system facilitates and therefore substantially influences
both the execution and monitoring phases of the business process management lifecy-
cle shown in section 2.7. In order to improve support for long-running autonomous
business processes, six research goals have been defined. Since workflow instance

7.3. Requirements of a Workflow Management System for
Long-running Autonomous Processes 155

agility is only partially addressed by the work for reasons explained in section 1.2
and strategic-operational cohesion has been addressed by the GPMN workflow lan-
guage, this leaves four research goals concerning the execution cycle:

• The system must support workflow model agility by allowing the workflow
designer to include contingencies for predictable changes that influence the
process. For the execution phase, this is supported by the GPMN workflow
engine presented in chapter 6.

• Organizational agility is the most demanding requirement on the workflow
management system. The objective of this research goal is to address the
needs of organizations which do not necessarily follow a full process-oriented
organizational layout but instead retain some functional organization and the
associated departmental structure due to reason described in section 2.1. This
means the workflow management system has to deal with organizations with
fairly autonomous departments which desire to maintain considerable auton-
omy regarding their internal structure, approach and infrastructure. This re-
quirement not only requires a distributed approach for implementing the work-
flow management system but also requires that the system allows the indepen-
dent departments a certain degree of participation and self-management of the
system as a whole.

• Balancing global control and local autonomy means that a trade-off has to be
reached: On the one hand, workflow management system with a centralized ad-
ministration excessively favors control and does not allow sufficient autonomy
by organizational subunits. On the other hand, a loose system of unrelated web
services without any organized workflow management system which includes
handling and distributing work items, user and role management and process
model management allows for a lot of autonomy of participating actors but
does not include enough structure to provide adequate global control. As a
result, a middle ground has to be struck, in which a structured workflow man-
agement system is employed which is also capable of distributed and devolved
administration.

• Finally, the long runtime of the targeted processes requires increased care in
terms of system robustness. The demand for this requirement is emphasized
further by the distributed nature of the system resulting from the need for orga-
nizational agility. When using such a system, the organization may restructure
and therefore require a change in the structure of the workflow management
system at runtime. Additionally, the high number of involved nodes increases
the chance that any particular node might fail. The system therefore must
be able to cope with sudden faults such as node disappearances and allow for
the distributed workflow management system to be restructured dynamically
without impacting the overall system. This requirement can be met through
two means: First, the system must allow functional replication to avoid loss

156
Chapter 7. Requirements for a Distributed Workflow

Management System

of function in case of faults or shutdowns. Second, if a fault overwhelms the
safety margin given by the replication, the system must degrade gracefully to
avoid damage to the long-running processes.

The monitoring phase of the business process management lifecycle also falls into
the responsibility of the workflow management system. The monitoring parts of the
workflow management system also have to address a set of requirements in order to
meet the research goals for the monitoring phase:

• The monitoring phase is primarily concerned with gathering events of running
workflow instances within the system and making them available to the admin-
istrative and analysis tools of the system. The first research goal for this phase
is the organizational agility: Since each participating department or compe-
tency center is notionally autnomous and maintains its own independent IT
system, the workflow management system is required to allow for the integra-
tion of the monitoring system with those independent systems by allowing each
organizational subunit to maintain its own event gathering part of the system
which will still receive all the events occuring within the system as a whole.

• Due to the long execution time, monitoring events must remain available over
long stretches of time. Meanwhile, reorganizations and system failures may
lead to the loss of nodes and therefore parts of the monitoring subsystem of
the workflow management system. As a result, the monitoring part must ensure
that gathered events stay available by replicating the event data on multiple
nodes.

Many workflow management systems are available and some examples like Activiti
(see [4]) and JBoss jBPM (see [90]) are presented in section 6.1. However, while
they are very suitable systems for production and administrative workflows, they are
difficult to adapt for long-running autonomous business processes for the following
reasons:

• The workflow engine or engines together with the modeling tools form an inte-
grated part of the system and are not easily replaced with a GPMN workflow
engine and modeling tools.

• While remote services such as WSDL- or REST-based web services can be used
to interact with remote systems, the workflow management system funcionality
such as user management and monitoring is a monolithic and centralized entity.
For example, in case of jBPM, a central Java application server is used as the
platform to for the workflow management system. This approach impedes
an adequate devolution of workflow management system functionality. While
it would be possible to replicate the functionality remotely through the use
of proxy services, these services would still rely on the central node which
represents a single point of failure and does not allow replication.

7.4. Workflow Enactment Service 157

As a result, a decentralized workflow management system must be provided to in
order to reach the requirements for the support of long-running autonomous work-
flows. Therefore the options for the core component of such a workflow management
system aside from the previously discussed workflow engine needs to be discussed:
The workflow enactment service provides the surrounding infrastructure to connect
the workflow engine with the business environment as well as enabling the necessary
communication and interfaces for the other parts of the workflow management sys-
tem and is the first component of the workflow management system discussed in the
next section.

7.4 Workflow Enactment Service

A key component of a workflow management system is the workflow enactment
service. This service includes one or more workflow engines for executing workflows
and, in many cases, forms an integrated unit with its engines. The enactment service
provides the necessary environment and middleware components to enable workflow
instances to communicate with the business environment, for example through in-
terfaces in the workflow management system reference model.

For a workflow management system targeting long-running autonomous business
processes, it is ideal if the workflow enactment service also helps to support the ad-
ditional requirements described in section 7.3. Most workflow management systems
include a form of enactment service, however, it is not always labeled as such since it
sometimes, e.g. in the case of jBPM (see [90]), consists of a BPEL workflow engine
on an application server with the use of web services but can be more complex in
more powerful workflow management systems.

A relatively straightforward approach for implementing the workflow enactment
service would be to follow a similar approach by implementing it as well as the dis-
tributed workflow management system based on such a service-oriented architecture
(SOA, see section 2.8), for example by using REST web service.

However, for the distributed workflow management system, the Jadex Active
Components platform was chosen as the enactment service due to the following
advantages it confers over a simple web-service SOA framework:

• Suitable engines for executing GPMN workflow models like the BDI and BPMN
engines are already included in Jadex (see sections 6.2.3 and 6.2).

• The Jadex platform offers a comprehensive service model as well as a concept
for service searches.

• If required, services can easily be made available as both WSDL and REST
web services (see [19]).

• Jadex includes concepts from PaaS cloud computing that includes the use of
automatic provisioning, non-functional properties and deployment features (see
[25] and [27]).

158
Chapter 7. Requirements for a Distributed Workflow

Management System

• Since the target system will be distributed, it’s execution is inherently parallel
in nature. The active components concept mitigates the difficulties of con-
current programming such as data loss or deadlocks by shielding individual
components from each other and ensuring their internal integrity.

• Supporting multiple departments requires communication using a network and
the implementation of suitable communication protocols and formats. Remote
communication and service calls are already included in Jadex and can be used
transparently, showing no difference between the use of local and remote service
calls in terms of implementation details.

As a result, the Jadex Active Components platform is used both as the workflow
engine as well as the workflow enactment service for the distributed workflow man-
agement system. The next section introduces the Jadex Active Components platform
and approach, followed by a section of platform enhancements that were implemented
as part of this work in preparation to the implementation of the workflow manage-
ment system.

7.5 Jadex Active Components

The Jadex platform was originally developed as a platform for executing software
agents with a particular focus on BDI agent architectures (see [130] and [127]). How-
ever, while software agents are useful for implementing certain type of distributed
applications, other approaches which are more suitable for particular types of appli-
cations are available. The usefulness of approaches for the development of distributed
systems is dependent on the type of distributed application because different kind of
distributed applications are forced to tackle different challenges which emerge from
developing for a distributed system.

Jadex active components is an approach that attempts to unify concepts from
agents, components, services and object-oriented programming to address three soft-
ware engineering challenges (see Figure 7.2): Many software applications and sys-
tems are likely to become distributed system. This already occurs once you employ
a client/server model but can also include distributed data as they can be found in
peer-to-peer or distributed database systems. Another challenging area is concur-
rency, which allows applications to perform tasks in parallel, potentially allowing for
significant performance gains but comes at the cost of synchronizing multiple parallel
execution threads.

The final aspect involves non-functional criteria which are aspects of a software
systems that, while important, are not directly tied to the functionality of the soft-
ware. The definition of non-functional criteria are somewhat soft and can depend on
the application or even the severity: For example, software performance is often re-
garded as being part of the non-functional criteria since the execution time generally
does not impede the functional results. However, if the performance is excessively
poor and delivering results at a point in time which is too late for them to be useful,
performance becomes part of the functional criteria.

7.5. Jadex Active Components 159

Figure 7.2: Challenges, paradigms and applications for the development of complex
systems (from [21])

Jadex active components attempts to address all three of these challenges by
combining four different concepts that have been used to address one or two of the
three aspects, while also maintaining a programming model which facilitates software
engineering. First, the concept of agents enables both concurrency and distribution
by assembling an application out of multiple distributed agents using asynchronous
messages to communicate. Similarly, objects have been used for distribution as well,
e.g. through remote procedure calls (RPC) and remote method invocation (RMI)
approaches.

Figure 7.3: Jadex active components combine concepts from the service component
architecture and agent technology (from [21])

Services have been used as part of SOA frameworks not only to allow distribution
through remote invocation but also to include non-functional criteria such as load-
balancing and the use of service-level agreements. In a similar fashion, large-scale
application structures called components have been used in order to quickly develop
applications. This is accomplished by clearly defining both the interfaces, usage and

160
Chapter 7. Requirements for a Distributed Workflow

Management System

the functionally provided by each component, thus emphasizing the reusability of
components as a non-functional feature.

The active components concepts attempts to unify these approaches (see [131])
in order to provide a solution that addresses these challenges within a software en-
gineering framework. The concept takes the Jadex approach for agent architectures
and combines them with a SOA approach called Service Component Architecture
(SCA, see e.g. [108]). SCA components consist of four primary features: The prop-
erties, which provide configuration information for the component, provided services
which are services the component declares to offer and are denoted by incoming ar-
rows and required services which declare the services the component uses in order to
function, denoted by outgoing arrows. The component can also include subcompo-
nents which can also offer and use services. The explicit declaration of both provided
and required services allows

Jadex adds the agent concept to this approach in order to create active compo-
nents (see Figure 7.3). Agents contribute the concept of an internal architecture,
for example a BDI architecture or a microagent architecture (see [127]) but can also
include other architectures such as execution of BPMN workflows. Based on this
structure, the application business logic can be added by the developer, which can
then offer provided services and use required services as declared.

Figure 7.4: Service call behavior and internal execution of active components (from
[132])

In order to provide internal consistency and ensure deadlock safety, active compo-
nents follow the actor model (see [3]): Active components only allow a single thread
to be active within the component at any given time (see Figure 7.4), which execute
small steps inserted into an internal execution queue. If another component calls a
service on the component, a step for handling the invocation is added using a call
interceptor chain. The call invocation is then executed on the internal execution
thread of the component, thus ensuring that only a single thread is active.

Since the execution of a service call is not instantaneous, the caller has to manage

7.6. Jadex Platform Enhancements 161

the delay. Simply suspending the thread of the calling component is insufficient since
this will freeze the component for the duration of the service invocation and prevents
the calling component itself from handling any more service calls and therefore risking
a deadlock situation.

Therefore, the calling component uses a future-based mechanism as an asyn-
chronous service call approach. The caller uses a local proxy representation of the
service to invoke the Java method on the service. The method then returns a future
object which represents a promise of eventually providing the return value (or excep-
tion in cases of errors). The caller can then inject a callback object into the future
object which will receive the return value of the service call. The call interceptor
chain ensures that the callback is executed on the thread of the calling components,
again satisfying the requirement of a single active thread per component.

In addition to these concepts, the Jadex platform also provides awareness mech-
anisms for locating active remote platforms, a service search for finding required
services with multiple search scopes (e.g. local to the platform, remote/global) and
automatic marshalling and transport mechanisms for communication. The next sec-
tion will give an overview of enhancement added to the Jadex platform in order to
benefit the workflow management system in addition to the concepts already offered
by the platform.

7.6 Jadex Platform Enhancements

Before the workflow management system can be implemented, additions have been
made to the Jadex active components platform to enhance its capabilities. Two
factors become important for a distributed workflow management system with the
kinds of redundancy requirements as described in section 7.3:

• The distributed nature of the proposed workflow management system means
that increased communication data between the various distributed compo-
nents of the system is to be expected. This is heightened by the redundancy
requirements, which in some cases necessitate data synchronization. As a re-
sult, the communication between Jadex platform nodes need to be as efficient
as possible both in terms of compactness of the messages as well as the perfor-
mance of transmitting the to a remote platform.

• Some parts of the system need to be able to store data in a persistent manner
for later review and analysis and to maintain the data between system-wide
shutdowns. For example, the monitoring subsystem must be able to store the
observed events that have occurred within the system to allow a review of
the data at a later point or to enable long-term statistical analysis. On the
other hand, the system is expected to be dynamic, with nodes appearing and
disappearing based on reorganization efforts, provisioning of additional nodes
to mitigate heavy loads and unexpected outages and errors in some nodes
over the long running time of the processes. This means that a global storage

162
Chapter 7. Requirements for a Distributed Workflow

Management System

system must be available that is able to cope with this dynamic nature by
using replication and permanent monitoring to redistribute data based on the
appearances and disappearances of nodes.

The next two section will describe two enhancement to the Jadex platform which have
been implemented to address these two problems and facilitate the development of
the distributed workflow management system. The first section will introduce a new
message format for Jadex which aims to improve both the performance of marshalling
the data that is being send during service calls and reduce the size of the message
that are exchanged. This is followed by the introduction of a distributed general-
purpose dynamic key-value storage system which allows the workflow management
system to store data in a globally available and dynamically adaptable form.

7.6.1 Compact and Efficient Messaging Format

As shown in section 7.3, long-running autonomous business processes require a dy-
namic and distributed workflow management system. This means that the system
is devolved into multiple parts which needs to communicate efficiently with other
parts of the system. The demand for efficiency is magnified by the necessary redun-
dancy due to the dynamic nature of the system. As a result, the Jadex platform
was enhanced with an efficient message format capable of assisting such a workflow
management system (see [83] and [89]).

In a distributed system such as a multi-agent system, the information that is being
conveyed between the components of the system has to be encoded in a predefined
format to ensure that the information can be understood by the receiver of the
message. The structure and form of such message formats can vary to a considerable
degree between systems and often involves tradeoffs between beneficial features a
particular message format may have. The benefits of such features also depends on
the context in which the format is used.

In order to differentiate different design goals and emphasize the ones that are
the focus for the compact message format, the following features of message formats
were used (from [83]):

• Human Readability allows humans to read messages with standard tools like
text viewers without the help of decoders or other special tools.

• Standard Conformance requires messages to conform to a published message
format standard or language standard, allowing interaction between systems
conforming to those standards.

• A Well-formed Structure defines a valid form for messages, allowing the system
to distinguish between valid and invalid messages.

• Editability goes beyond human readability by allowing users to edit and re-
structure messages using standard tools such as text editors.

7.6. Jadex Platform Enhancements 163

• Performance describes the computational requirements to encode and decode
messages.

• Compactness evaluates the size of encoded messages.

Message formats can emphasize these features to varying degrees, however, with
some features partially contradicting others, no message formats can exceed in all of
them at the same time. For example, a human-readable format necessitates a certain
verbosity to ease understanding which stands in opposition to the compactness of
messages encoded in such a format.

Table 7.1: Features for message formats and their importance during application
development and when used in production after deployment (from [83])

However, the importance of the features also vary depending on the application
or the context in which they are used. For example, Table 7.1 evaluates the impor-
tance of the features based on different development stages of software: During the
development phase, the correct communication approach of the software has to be
determined and the number of errors in the software is still high. Therefore, it greatly
assists software development if the message format is human-readable and editable
because it allows the developer to debug the application using relatively low-level
tools like packet sniffers. A well-formed structure also helps to automatically iden-
tify problems in message content by employing automatic evaluation and test tools
which validate messages based on the structure. Performance and compactness is less
important in this stage since the goal is the development of the functional aspects
of the software and the system load consists of the low number of test operations by
the developer, so a lower performance or increased bandwidth demand are less of an
issue.

This stands in contrast to the situation when the software has left development
and is deployed in a production environment. At this stage, the previous development
cycle should have been able to identify and eliminate most of the bugs in the software,
so aspects like human readability are less of a concern. However, since the load
tends to be heavier during production and slow responses are less acceptable, the
performance of the format becomes a more important feature of the language. Also,
in order to keep infrastructure costs low, the load on the network has to be considered
which puts more emphasize on the compactness of the message format.

The usefulness of standard conformance of a message formats depends on the need
to interact within a heterogeneous system, where an agreement on a standardized
message format becomes a necessity. Therefore, the importance depends on the
application context. In case of the workflow management system, the system itself

164
Chapter 7. Requirements for a Distributed Workflow

Management System

only uses the Jadex platform as its basis. Communication with systems outside
the Jadex environment can be done using REST service calls. The communication
between components of the system being the primary concern for large loads, the
communication efficiency and compactness between Jadex platforms are important
in this case, with a lower performance and more standardized communication path
is available to interact with other systems.

Table 7.2: Message formats in relation to the six specified features with Jadex binary
focusing on performance and compactness (from [83])

The goal of the development of the compact and efficient message format called
Jadex Binary was to emphasize the performance and compactness of the message
format first and foremost. Before the development of Jadex Binary, the default
message format used by the platform was a format called Jadex XML, which uses an
XML-based structure to format messages. This meant that the Jadex XML format
emphasized the other aspects such as human readability and being editable over
performance (see Table 7.2).

As additional reference points for formats with similar emphasizes, two represen-
tative formats were used to compare with both Jadex XML and Jadex Binary. First,
FIPA SL is a standardized format used to allow different multi-agent platform to
communicate with each others (see [53]). It is a highly-formalized language with a
clear definition of its structure. Since it is text-based, it is reasonably well editable
and human-readable. It therefore is a representative of languages with an emphasize
on the first four features shown in Table 7.2.

In contrast, the Java language itself also offers an option for encoding objects
into a format through its serialization API. It is the standard approach in Java for
serializing objects and both its compactness and especially its performance are very
good. However, it has three main disadvantage that make it difficult to use in the
context of Jadex:

• In order to serialize objects, the Java virtual machine requires the developer
of the class of the object to declare it as serializable by implementing the
java.io.Serializable marker interface. This not only applies to the class of the
object itself but also to further subobjects contained within the object. How-
ever, in many cases a developer may wish to transfer objects based on classes
which are not under his control such as classes defined in external libraries.
An example of this is the java.awt.image.BufferedImage class included in Java
itself. Since it is included, it cannot be changed by the developer and the
serialization cannot be extended to include this class

7.6. Jadex Platform Enhancements 165

• The serialization does not tolerate any sort of divergences between classes. If
the class definitions between two nodes differ even the slightest, the serializer
will decline to decode the encoded object. This includes changes such as merely
adding a field to a class but can also simply include the use of different bytecode
compilers on each node. This requires all classes on each node not only to be
in perfect synchronization, even if an omitted field could be tolerated, but it
also requires all of it to be compiled using the same toolchain.

• Some classes include redundant data which is cached for quick retrieval but can
easily be recalculated if necessary. For example, an implementation of the Java
class java.util.Date may include not only the epoch-based field which defines
the point in time but also cache value for the day, month, year, etc. in case it
is requested to speed up later requests. In this case transmitting this cached
information is not beneficial since serializing and transmitting the information
often takes longer than recalculating at the destination. However, since the
Java serialization is not customizable, the transmission of such information
cannot be inhibited.

As a result, the serialization of messages and contained objects require a more flexible
approach. Nevertheless, due to its simplicity and integration with the Java virtual
machine, it can act as a useful comparison for evaluating Jadex Binary as a format
focused on performance and compactness.

Since the focus of Jadex Binary is compactness and performance, it does not use
a string-based encoding like Jadex XML. Instead, it uses a binary form in order to
encode the input objects that represent the message or the data of a particular service
call. The format itself is byte-oriented and uses type and statistical information about
the data in order to use shorter encodings for common cases over rarer ones, thus
including some form of initial data compression.

The encoding and decoding is based on a bottom-up approach: First, encodings
for primitive types are provided which can then be used to represent more complex
data object that are based on those primitives.

The first primitive that is considered are integer values. Most byte-oriented
approaches to storing integer values often use the same fixed framing as used on the
underlying hardware. For example, they may be stored as 32 bit (4-byte) or 64-bit (8
byte) values. In order to allow a wide enough headroom for storing values, usually a
fairly large frame is chosen that covers even the most extreme values that may occur.

However, in many cases such as identifier values, this value range is not actually
fully exploited and the overwhelming number of values are on the low end of the value
range. In order to exploit this, Jadex Binary uses a special encoding for integer values
with a variable size. These variable-sized integer values use an encoding that encodes
low values in a compact size at the expense of larger values that, in some cases, tend
to use slightly more space than in ideal fixed-size formats.

The encoding is based on a similar encoding approach used by the Extensible Bi-
nary Meta-Language (EBML, see [162]), which in turn was inspired by the encoding

166
Chapter 7. Requirements for a Distributed Workflow

Management System

Table 7.3: Encoding of a complex object in Jadex Binary (from [83])

scheme used in the Unicode UTF-8 encoding (see [148] and [169]). A variable-sized
integer consists of at least a single byte, but can contain an arbitrary number of bytes
with examples of up to four bytes shown in Table 7.3. The number of bits set to
zero, starting from the highest-order bit, specifies the number of additional bytes in
the value beyond the first byte. These additional bytes are refered to as extensions
and allow the encoding to specify arbitrarily-sized values.

The highest order bit set to one terminates the zeros that specify the number
of extensions. The remaining bits of the byte and the following extensions can be
used to encode the value itself. Each additional extension adds an additional value
range, which starts at the first value following the previous range, thus each value
can only be encoded with a specific number of extensions as shown in the figure.
The advantage of this approach is that small values use less space while still allowing
larger values to be encoded.

Figure 7.5: Structure of encoded string values in Jadex Binary (from [83])

The first use for variable-sized integers is the encoding of string values as primitive
types. On the first occurence of a particular string in the object graph, its encoding
consists of three parts: First, the string is assigned a unique identifier using a counter.
This unique identifier is encoded as variable-sized integer since most objects contain
only a small number of unique strings and the identifier values therefore tend to be
low. Nevertheless, the encoding allows for large numbers of unique strings due to
the variable encoding.

The next part of the string encoding is the size of the string. This allows the
decoder to determine when the string is finished and the next part of the message
begins. Since most strings are short, the size of the string is also encoded as variable-
sized integer. Finally, the string itself is encoded as UTF-8 and appended to the
encoded message. Most text strings tend to consists primarily of ASCII characters
which as relatively small to encode in UTF-8, but other character sets are still
supported.

If the same string occurs a second time within the same message, it is encoded

7.6. Jadex Platform Enhancements 167

by simple appending the variable-sized integer of its identifier to the message as a
reference to the actual string. Messages are decoded in the order they are encoded
with the both the encoder and decoder storing previously found unique strings in a
string pool. As a result, the decoder can implicitely infer that a particular identifier
is a reference because it has already stored the string from its previous decoding.

In addition to these primitive values, the basic encoding library adds support
for some additional simple encodings for primitive values. Aside from variable-sized
integers, fixed-size integers are also supported in sizes of 8, 16, 32 and 64 bits.
Furthermore, 32 bit and 64 bit IEEE floating point values are supported. Both
fixed-size integer values and floating point values are put in network byte order (big
endian) and added to the message.

Figure 7.6: Handling of fully-qualified class names in Jadex Binary

The next step after encoding primitives is the encoding of more complex objects.
However, when transmitting complex objects, the object type, represented as a Java
class, has to be identified. Identifiers for classes in Java consist of two parts, the class
name and the package in which the class can be found. The package itself can be any
string (with some mild restrictions), but are often structured hierarchically using a
dot notation. The package name together with the class name connected with a dot
is called a fully-qualified class name. For example, the class in Java representing
strings is has the fully-qualified name java.lang.String.

Since most packages contain multiple classes and multiple package contain the
same substrings due to their hierarchical structure (for example, many packages
included in the Java standard library start with ”java.”), it can be exploited to reduce
the size of multiple occurences of both package substrings and class names.

Figure 7.6 shows how this is accomplished in Jadex Binary. The class name
encoding is based on the same string pool as normal strings and can therefore share
identifiers. From the perspective of the decoder, the identifier of the full class name
is first looked up in a class name pool. If the name is not contained in the pool,

168
Chapter 7. Requirements for a Distributed Workflow

Management System

it is the first occurence of that fully-qualified class name in the object and a new
identifier is assigned. The next part is the identifier of the class name separated from
the package name and is looked up in the string pool. This is follows by a list of
package fragments that identify the package and are stored in the package fragment
pool.

This means that not only are reoccurring fully-qualified class names reused
through reference but each class name and package fragment is also assigned
individual identifiers. This approach means that substrings of the classes can be
shared through those identifiers. For example, the ”java” and ”lang” part of the
package can be shared between the classes java.lang.String and java.lang.Number.

Figure 7.7: Encoding of a complex object in Jadex Binary (from [83])

Both the encodings of primitive values and encodings of class names are available
as methods as part of an encoding context which can then be used to encode more
complex objects. This is accomplished using a object traverser, which includes a
number of encoders or decoders which are used to handle specific objects and employ
the methods available in the encoding context for encoding primitives and class
names to encode those input objects.

As a catch-all, a encoder and decoder for objects following the Java Beans stan-
dard is included which extracts the bean property fields and uses the traverser to
encode its subobjects. This results in a structure as shown in Figure 7.7. These
objects start with the fully-qualified class name of the encoded class, using the class
name encoding as decribed above. This is followed by a variable-sized integer that
specifies the number of subobjects included in the object as fields. After the specifi-
cation of the number of subobjects, the encoded subobjects themselves are appended
to the encoding, starting with the field name to which they are assigned.

The subobject itself is recursively encoded using the traverser. This means that
each subobject can itself be a complex object and contain subobjects. However,
object structures are not necessarily trees but can include cyclic references as shown
in Figure 7.8. As a result, object must be interpreted as graphs and the encoding
must be able to resolve the occurence of cyclic references.

This is accomplished by maintaining a pool of previously decoded object and
assigning them identifier as they are discovered, similar to the approach taken for
the string pool. The objects are added to an object pool. If the object is again
found in another place in the object graph, the object is references by encoding the
previously assigned identifier as a variable-sized integers. This way the cycles can be
broken during encoding and the correct object reference inserted during the decoding
of the objects.

7.6. Jadex Platform Enhancements 169

Figure 7.8: In Jadex Binary, complex objects are encoded using a recursively-
descending algorithm which uses the primitive encodings are its building block and
is capable of resolving reference cycles

In addition to the encoding of complex objects, Jadex Binary also introduces
special support and optimization for Java array types. The algorithm differentiates
between primitive arrays and object arrays. In primitive arrays, the type of the
elements can be inferred by the array type itself since primitive types cannot be sub-
classed and are always assigned a value. As a result, the encoding of primitive arrays
contain the array type, the number of elements in the array and the concatenated
values of the elements without any futher type information.

Object types on the other hand require more complex handling: While the array
type of object arrays also specify the type of its elements, the actual element can be
a subclass of the type specified by the array. Furthermore, the value of the element
can be a typeless null value. However, in many cases the element type does match
the type defined by the array.

The encoding algorithm therefore attempts to exploit this heuristic by preceding
each element with a boolean value that specifies whether the element’s type is de-
fined by the array type, in which case the element is appended.If the element does
not exactly match the type defined by the array, the boolean value specifies that
additional type information follows before the element itself is encoded. As a result,
the type information for each element is only encoded if it differs from the array
specification.

The resulting encoding of messages was compared to the previously introduced
formats with FIPA SL and Jadex XML having goals that differ from the compact-
ness and performance goals of both Java serialization and Jadex Binary. For the
compactness test, the test object contained a 514 byte string literal, a randomized
long value encoded as string, a single integer value an array of 20 integer literals,
an array of boolean values and an array with 100 additional instance of the object
itself.

170
Chapter 7. Requirements for a Distributed Workflow

Management System

Figure 7.9: Size of a large message encoded using different message formats with
(right) and without (left) additional application of the DEFLATE compression al-
gorithm (based on [83])

The first test involved the perofmance of the formats itself without any addi-
tional compression algorithm being applied (see Figure 7.9, left half). In terms of
compactness, the uncompressed output of Jadex Binary is considerably smaller than
the other formats including Java serialization. This can in part be attributed to the
redundancy-reducing properties of Jadex Binary.

However, by default, Jadex applies the DEFLATE compression algorithm (see
[39]) to the message before they are transmitted to further reduce their size. When
the compression algorithm is applied, the differences between formats is reduced (see
Figure 7.9, right side), nevertheless, Jadex Binary maintains a lead over the other
formats.

For the performance test, the test object was changed slightly to increase the
load on the algorithm and reduce variability of the outcome. This was accomplished
by increase the number of subobjects from 100 to 100000 subobjects. The tests were
conducted using a system containing an Intel i5 750 processor with four cores clocked
at 2.67 GHz. The system included 8 GiB of memory, however, the Java memory heap
was limited to 2 GiB. The software used to execute the test was the Oracle Java SE
6 Update 31 Java virtual machine running on a Gentoo Linux system running an

7.6. Jadex Platform Enhancements 171

Figure 7.10: Perfomance comparison of message formats with and without applica-
tion of an additional compression algorithm

unmodified Linux 3.2.2 kernel compiled for the x86-64 instruction set. The tests
were repeated twice with the first results being discarded to reduce the impact of
just-in-time compilation and lazy object initialization.

The results shown in Figure 7.10 omit the results FIPA SL for clarity, since its
uncompressed execution time exceeded 20 seconds ([83] contains the full results). The
results show that while the compression is able to reduce the compactness differences
between the formats, the larger input size of bulkier formats increase the time for
the message to be ready for transmission. In uncompressed form, Java serialization
is remains ahead of Jadex Binary, however, when compression is applied, its larger
input message size negates its advantage.

As a result, the new Jadex Binary format allows high performance and compact-
ness in message sizes while maintaining the flexibility of the Jadex XML format at
the cost of other features listed in Table 7.1. The format thus enables the distributed
workflow management system to exchange messages at a high degree of performance
and low networking impact. Additionally, when combined with the Jadex streaming
extension (see [28]), it allows workflows to quickly exchange even large amounts of
data with a low overhead.

7.6.2 Distributed Storage Service

The environment in which the distributed workflow management system is used is
highly dynamic: Nodes in the system can appear and disappear at any moment either
due to organizational restructuring or failures occuring over the long execution time
of the business processes. However, the workflow management system is not only
responsible for executing workflows but is also tasked with the monitoring aspect
of the BPM lifecycle. While monitoring a production system, certain system events
occur which need to be stored for use in the analysis phase of the BPM lifecycle. As
a result, a reliable long-term storage is necessary to store these events but also in

172
Chapter 7. Requirements for a Distributed Workflow

Management System

order to offer the workflows themselves a storage service which they can employ to
permanently store information.

While nodes can store data locally, the disappearance of a node means that the
data stored on that node is lost to the system. As a result, a certain level of replicated
data must be created and maintained across the system to ensure that all data can
be recovered even when nodes are removed. A number of approaches have been
considered in [37] in order to solve this issue and offer a distributed and resilient
storage service for Jadex.

One possible approach to create a level of replicated data is the use of a relational
database system such as MySQL in a master-slave configuration (see [77]), where the
data is distributed among multiple database nodes. In this configuration, two modes
of operation are available: Eager replication, which guarantees consistency of the
data but introduces additional overhead by requiring synchronized commits between
nodes. In contrast, in lazy replication, this overhead is avoided by asynchronously
committing the data to the slave nodes but the assurance of consistency is lost since
the slave nodes may not always contain the most recent data set.

However, this approach is inadequate for the dynamic environment of the work-
flow management system: The system has to be manually set up with dedicated
master and slave nodes and preconfigured. This means that in case of disappearing
nodes, the system cannot fully automatically address the problem by recruiting addi-
tional nodes, nor is it capable of automatically integrating new nodes. The approach
also replicates all the data on all slave nodes and therefore introduces an unnecessary
replication level. Finally, the master node is a critical failure point and slave nodes
cannot be automatically promoted to serve as a new master node.

In part, these issues can be attributed in part to the fairly rigid requirements
of relational databases. As a result, a number of alternative approaches have been
developed under the NoSQL name, which depart from the stringent consistency
requirement of traditional SQL databases. Candidates following this approach and
which offer some dynamic storage concept include examples such as Amazon Dynamo
(see [36]) which is a distributed key-value store and Google BigTable (see [33]) which
follows a structured data model concept called Column Family.

However, these concepts tend to have concepts when used in the environment
envisioned for the distributed workflow management system. One major issue is the
configuration of the systems, which tend to be relatively complex and require the
explicit initial definition of parameters before the system can be started including
aspects like the number of nodes participating in the system or the definition of
master- or super-nodes.

These configuration issues impede the usefulness of such as system in highly dy-
namic environments. If any node in the system may appear or disappear at any time,
the system must be self-configuring and self-organizing in order to represent a viable
solution for such an environment. Furthermore, while the systems can cope with the
loss of nodes while maintaining data availability, node replacement and integration
of new nodes is usually non-automatic and require administrative intervention. Since

7.6. Jadex Platform Enhancements 173

the workflow management system envisions a decentralized administrative control,
it represents an issue for those approaches in this situation.

Figure 7.11: Architecture of the distributed storage system for the workflow man-
agement system represented as SCA component diagram (from [37])

As a result, a dynamic distributed storage system which can easily integrated in
a highly dynamic Jadex environment has been developed (see [37] and [88]). Since
the expected data is relatively simple, a key-value approach has been chosen, but
an extension to support more structured forms of data can be implemented at a
later point. The approach differs from a distributed hash table approach because it
assumes that nodes can disappear at any moment.

The architecture of the storage system is shown in Figure 7.11. For clients wishing
to use the system it offers a service interface IStorageClientService which the clients
can use to access the storage service using Jadex service calls on that service interface.

The service allows clients to store data with the storage service being responsible
for both distribution and replication of the data. A specified replication level of the
data is maintained even when nodes are added or leave the system. For example, if a
node leaves the system, the data of that node is automatically replicated on a spare
nodes using the copies of the data still available in the system. The storage is seg-
mented into keyspaces to allow multiple applications and components of applications
access to separate data sets and avoid key collision between them.

The storage system application consists of two components which are repli-
cated on every node participating in the storage system, the StorageAgent and the
KeyspaceAgent. The storage agent provides two functions for the system: First, it

174
Chapter 7. Requirements for a Distributed Workflow

Management System

interacts with the storage system clients through the IStorageClientService interface.
Second, it coordinates with other storage system nodes using the IStorageNodeCon-
figurationService. This coordination includes the initial distribution and replication
of the data as well as the restoration of the targeted replication level in case nodes
are lost.

The StorageAgent component also retrieves data that is stored on remote nodes
if necessary, allowing the client transparent access to the data stored throughout
the system. For example, if the StorageAgent receives a read request through the
IStorageClientService for data that is not stored locally, it will search for the data
in other StorageAgent by querying them for the availability of the data. Once the
correct node for the data is found, the location is cached in case read or write requests
follow the initial one.

The local storage for each storage system node is represented by the
KeyspaceAgent. This agent encapsulates the local storage which currently employs
an Apache Derby (see [50]) relational database for storage. However, other storage
options can be implemented as alternative such as flat file storage system.

As a result, the system is based on a peer-to-peer approach of equal nodes in
order to accomodate the dynamic requirement of appearing and disappearing nodes.
Howver, the system also supports the occurrence of system partitions where a part
of the storage system separates from the rest of the system which can be the case if
network lines are lost.

However, due to the CAP (consistency, availability, partition tolerance) theorem
(see [57]), a system can only maintain two of the three goals of availability, resistance
to partitioning and consistency. Therefore, the storage system has to sacrifice the
consistency goal. However, the system uses a vector-clock for each data entry in order
to document where consistency errors occurred and allows the user of the system to
implement a domain-specific resolver which includes the necessary steps to resolve
conflicts of data entries that occurred during a partition event.

Figure 7.12: Performance of 1000 write requests using both unversioned and ver-
sioned local databases as well as different configurations of the distributed storage
system (from [37])

Compared to the local storage of data within the nodes, the added coordination
and synchronization effort necessary for the storage system is expected to introduce
a certain performance overhead. Ideally, this overhead should be kept relatively

7.6. Jadex Platform Enhancements 175

low without sacrificing any of the advantages the distributed and replicated storage
introduces.

As a result, the performance of the storage system has been tested both regard-
ing its functionality and performance. Functional tests included both storage and
retrieval in both single- and multi-node environments. Additional tests included the
addition and automatic integration of new storage nodes, the deliberate but con-
trolled shutdown of nodes, partitioning of the system and the deliberate termination
of nodes through a hard process removal from the local operating system. In each
case the system maintained the availability of the data and was able to detect data
conflicts using the vector clock in case of the partition event.

In order to ensure an adequate level of performance, a series of tests were per-
formed. Figure 7.12 shows the performance of 1000 write requests when performed
on both local databases as representatives of centralized or local storage options as
well as the storage system. For the local storage options, two different database
setups were used. First, an unversioned database, in which the data entries are not
versioned as they are in the storage system. In order to separate the overhead nec-
essary for the versioning, a versioned local database is used as a second reference
point.

The storage system was tested in four different setup. First, a local single node
storage system is used to show the overhead introduced by the storage system itself.
Here, two different access modes are used: A parallel mode, where the writes are
issued to the storage system in parallel and a consecutive mode, in which the write
requests are issued sequentially after the previous write request has been confirmed.
Both access mode tests are then repeated on a full multi node storage system which
then documents the performance overhead based on the distribution and replication
of the data.

As is shown in the figure, the storage system, as expected, introduces performance
overhead due to the vector clock versioning, the self-organization and the distribution
and replication. Since the system is capable of handling parallel access request,
the parallel access mode tests are more representative of the real world use of the
system since it does not include the added latency of the confirmations. While the
performance is degraded compared to local storage, the length of a write request is
either slightly lower or slightly higher than twice the access time of an unversioned
or versioned local database system respectively. Due to the added functionality of
resilient behavior in a dynamic environment, this performance loss can be considered
an acceptable tradeoff.

This concludes the extension of the Jadex platform for the workflow management
system. The next chapter will introduce the overall architecture of the distributed
workflow management system, followed by a section about the implementation details
of important components.

176
Chapter 7. Requirements for a Distributed Workflow

Management System

Chapter 8

Distributed Workflow
Management System Architecture
and Implementation

This chapter introduces the distributed workflow management system aimed at meet-
ing the research goals for long-running autonomous business processes. The system
is based on the requirements, approaches and software components described in the
previous chapter.

The distributed workflow management system called Jadex WfMS has two goals
that need to be addressed as part of its architecture and implementation: First,
it should provide the functionality of a traditional centralized or semi-centralized
workflow management system as defined in the reference model by the workflow
management coalition (see [68] as well as section 7.2). However, in order to ad-
equately support long-running autonomous business processes and workflows, the
system also has to address the requirements in section 7.3 based on the research
goals of the execution and monitoring phases of the BPM lifecycle introduced in
section 2.7.

8.1 Architecture of the Jadex Workflow Management
System

In order to fulfill the requirements, the functionality of the workflow management
system has to be modularized and distributed. The parts of the system also have
to be able to be replicated not only to increase the resilience over the extended
execution time of the workflows using it but also to allow different organizational
subunits to perform their own independent administrative management on each part
of the system.

As a result, the necessary modularization of the functionality the workflow man-
agement system has to address had to be determined. The following parts of the
system were identified as necessary in addition to the functionality provided by the

177

178
Chapter 8. Distributed Workflow Management System

Architecture and Implementation

workflow engines and features provided by the Jadex platform:

• Workflow enactment and execution: The workflow management system must
be able to enact new workflow instances. The creation of instances and exe-
cution is already available using the workflow engines and platforms; however,
the system must also provide a way for users to add workflow models to the
system, maintain them in a repository and provide an interface for enacting
them.

• Work item management: If a workflow contains tasks that need to be performed
by human workflow participants, work items are created and distributed to the
appropriate users as part the workflow management system. The system must
provide this functionality in a distributed form that lets workflow instances
create new work items that need to be performed, offers a management capa-
bility that distributes the items to the right groups of users and ensures that
the results of the tasks are returned to the workflow.

• User management: Human users can play multiple roles within the workflow
management system. For example they can be workflow participants who per-
form tasks for a workflow instance. Another group of users are in charge of
performing administrative actions in the system such as manually enacting
workflow instances or redistributing work items when the original workflow
participant becomes unavailable e.g. due to illness or vacation. This means
that the system must be able to manage user accounts that are used to au-
thenticate users of the system, assign roles used to distribute work items and
define privileges for administrative and other actions regarding the system.

• Monitoring: While the workflow management system is active, information can
be gathered about the events occurring in the system. This can include events
about workflow instances being enacted or instances entering a state where
they are terminating, goals being activated, plans being executed, tasks being
performed; also workitems created, assigned and removed. The gathering of
such information is critical for the monitoring phase of the BPM lifecycle. As
a result, the system requires the means to gather and store the events that
occur.

• User access: Users of the workflow management system need to be able to
access the system. However, the system must be able to enforce the roles
and privileges set by the user management so that each user is only able to
use system and workflow functionality in the framework their privileges allow.
The system must therefore offer a clearly defined interface which user client
software can use while protecting the rest of the system from unauthorized
access.

Based on this set of functionalities, the architecture of the workflow management
system has been designed as shown in Figure 8.1 and as described in [82]. Each

8.1. Architecture of the Jadex Workflow Management
System 179

F
ig
ur
e
8.
1:

A
rc
hi
te
ct
ur
e
of

Ja
de
x
W

fM
S,

th
e
di
st
ri
bu

te
d
w
or
kfl

ow
m
an

ag
em

en
t
sy
st
em

,e
ac
h
co
m
po

ne
nt

sh
ow

n
ca
n
be

di
st
ri
bu

te
d,

re
pl
ic
at
ed

an
d
ad

m
in
is
te
re
d
in
de
pe

nd
en
tl
y
(f
ro
m

[8
2]
)

180
Chapter 8. Distributed Workflow Management System

Architecture and Implementation

functionality has been designed as a Jadex active component using and offering a
variety of service interface to interact with the other parts of the system. As a result,
the Jadex WfMS workflow management system itself consists of the following five
components:

• The execution component, which provides the functionality of workflow en-
actment and execution. The functionality is split into two parts which are
represented by two different service interfaces. First, the component manages
an internal repository of deployed workflow models that can be used to enact
workflow instances. Additional models can be added to or existing models can
be removed from the model repository using the IModelRepository interface
which offers the necessary service methods to perform these functions. Sec-
ond, while the platform itself performs the actual enactment and execution of
the workflow instances, an interface for enacting and terminating workflow in-
stances is provided called the IExecutionService interface. This interfaces not
only wraps the platform functionality to enact workflow instances as active
components but also performs the association between the named workflow
models in the repository and the actual models stored on disk, allowing the
user to only specify the name used in the repository.

• The work item management component concerns itself with the availability
of tasks that are performed by workflow participants. The component only
provides a single service interface called IWorkitemHandler, which offers the
functionality to create, assign, suspend, submit and finish work items. While
the work items specify the role or user that is supposed to perform the task,
the work item management component is agnostic regarding user management
and simply manages all available work items.

• The authentication component is tasked with providing the tools for user man-
agement. It offers a single service interface called IAAAService. The name
is based on the functionalities authentication, authorization and accounting
which this components aims to facilitate. The component maintains the user
accounts that have been created which includes critical information such as
passwords and authentication tokens, roles the user fulfills with regard to work-
flows and work items, security roles which define the privileges for functional-
ities of the workflow management system for the users. This component only
provides information about users and allows the creation, deletion and mod-
ification of user accounts but it does not enforce the defined restrictions on
users.

• The monitoring component is responsible for gathering events occurring within
the workflow management system, storing them permanently and making them
available for analysis on request. This component only provides a single ser-
vice interface, ILogService, which allows other components to announce events
that have occurred. It also allows the retrieval of stored events for analysis.

8.2. Jadex Workflow Management System Implementation 181

Since events about nearly every aspect of the workflow management system
are monitored, all other components use the service interface to store events.

• Finally, the access component represents the gatekeeper for the workflow man-
agement system with regard to human users accessing the system. Users can
either be workflow participants, system administrators or may fill both roles
at the same time. It offers the IExternalWfMS interface which is used to ac-
cess all the functions of the workflow management system from a user client
perspective. The component itself does not hold any state, instead it uses
the other components to perform the functionality the IExternalWfMS inter-
face offers. For example, in order to authenticate users, the components uses
the authentication component with the IAAAService interface to access the
necessary information.

In order to meet the resilience and local administrative requirements for the workflow
management system, each component of the system can be replicated and multiple
instance of them can be active within the system at the same time. The components
self-organize and distribute functionality without additional configuration and each
component instance can be maintained by a different part of the organization.

System component instances can be added and removed while the system is
active, with missing functions being delegated to alternative instances in case of
component shutdown. As long as at least one instance of each component is active,
the whole range of system functionalities will remain available. If one component
type is missing, the system will have reduced functionality such as being unable to
enact further workflow instances if no execution component is available.

The next section will introduce the implementation details of each component as
well as more detailed system concepts such as the security model used to shield the
system from unauthorized access.

8.2 Jadex Workflow Management System Implementa-
tion

The requirements for the distributed workflow management Jadex WfMS necessitate
that the system can support local administration of parts of the functionality of the
system by organizational subunits, addition and removal of nodes by subunits. These
requirements are derived from the goal of allowing increased local autonomy within
the organization while maintaining many global control aspects of workflow man-
agement (see section 1.2). Additionally, in order to support the extensive execution
time of long-running autonomous processes, the system should be able to replicate
functionality for distribution across multiple networked nodes.

In the previous section, five main components of the system were defined which
each represents a certain aspects of the functionality of the workflow management
system. This chapter will provide further implementation details regarding each of
the components.

182
Chapter 8. Distributed Workflow Management System

Architecture and Implementation

8.2.1 Execution Component

The execution component encapsulates two related functions based on the WfMC
reference model (see section 7.2): First, while the Jadex platform itself already pro-
vides the means to enact and execute both GPMN and BPMN workflow instances
as active components (see section 6.5), the interface for enacting them includes a
degree of complexity which is unnecessary for workflow enactment. The execution
component abstracts from the lower level layer for executing active components on
the Jadex platform and offers a layer with an interface for enacting workflow in-
stances which then passes the execution details on to the platform. This part of
the functionality refines the platform features into the workflow enactment service
as defined by the WfMC workflow reference model.

The second function consists of the management of deployed workflow models
which are used to enact instances. This functionality is the connection to the process
definition tools and represents the functionality of interface 1 in the WfMC workflow
reference model. The execution component combines these aspects since they tie
into each other in a way that becomes relevant in a distributed system: The local
node or platform is only able to enact workflow instances with models that are
available locally. Therefore, the workflow model must be deployed locally through
the definition service. It is generally not useful to deploy the workflow model in one
node in the distributed system and then attempt to enact a workflow instance of
it on another node since the model would have to be transferred before it can be
executed which represents a form of ad-hoc deployment on enactment.

This issue does not arise in a centrally-organized workflow management system
since the workflow models can only be deployed in the same location as they are
executed. In a distributed workflow management system, it is therefore advantageous
to combine the two functions and allow deployment on the nodes where they are used.

However, the execution component follows the reference model in that it splits
the two function between two service interfaces, the IModelRepository for deploying
and undeploying workflow models and the IExecutionService for workflow enactment.
The IModelRepository offers three methods in order to manage the models deployed
on an execution component. The addProcessModel() method allows the addition
of new process model to the component’s process repository. Users can specify an
identifier for the model which is later used to refer to the model. The model itself
can either consist of a plain process definition file or it can consists of a packaged
.jar file which can also contain additional subprocess models and classes for further
functionality that is used by the process. The deployed process model is then stored
in a configurable location on the local persistent storage medium and an entry is
created that references the model identifier used during deployment with the deployed
files.

Workflow models deployed in such a way can then be enacted as workflow in-
stances using the IExecutionService interface. Here, three methods are used: First,
the startProcess() method receives the model identifier used during deployment as
input. The service then locates the associated model files for the process and enacts

8.2. Jadex Workflow Management System Implementation 183

the main process file as an active component representing the workflow instance on
the Jadex platform. The method returns an instance identifier that represents the
running workflow instance.

Most business processes have a clearly defined point at which they are considered
to be finished. Workflows based on such processes will terminate themselves by
shutting down the active component instance used to represent them. However,
if a workflow requires manual termination or becomes unable to terminate itself
due to an implementation or modeling error, the IExecutionService interface offers
a terminateProcess() method which will initiate the termination of the workflow
instance if provided with the instance identifier. Finally, the IExecutionService also
offers the capability of requesting a list of active workflow instances by calling the
getProcessInstances() method.

If a workflow model is no longer required, it can be undeployed by calling the
removeProcessModel() method of the IModelRepository interface. This method will
remove the deployed model from the repository and further enactments of work-
flow instances based on that model will not longer be possible. However, workflow
instances based on the model which are still active will remain so until they are ter-
minated. Consequently, the files of the model will only be removed once all workflow
instances based on the model have terminated. The final method of the IModel-
Repository service is the getProcessModels() service call method which is used to
retrieve a list of all locally deployed workflow models.

As a result, the execution component offers two interfaces that are used to both
deploy workflow models and enact workflow instances on nodes where it is being
executed. Since the repositories are decentralized, each organizational subunit can
maintain its own repository of workflow models as required, increasing their auton-
omy with regard to workflow model management and enactment.

8.2.2 Work Item Management Component

Many workflows do not represent fully-automated business processes since not all
tasks of a business processes can be automated. For example, while most data
processing tasks can be performed automatically by a machine, customer counseling
or customer service requests are usually processed by an employee. As a result,
business processes involving such tasks are partially automated and rely on human
participants to carry out certain work orders. In a traditional workflow management
system, this is accomplished with the creation of work items: For example, if a
BPMN process reaches a human task within the workflow, a work item containing
a description of the necessary task is created for the task and the process thread is
suspended at that point until the work item has been handled and is returned to the
process.

Since organizations contain employees with different sets of skills, it is not useful
for a work item to be processed by random employees. While directly specifying a
specific employee by name within the task is possible, it is often avoided since the
specified employee may be unavailable due to vacation or sickness. Furthermore, in

184
Chapter 8. Distributed Workflow Management System

Architecture and Implementation

many cases tasks can be performed by groups of employees and it is desirable to
distribute the workload evenly between them. As a result, workflow management
systems often use the concept of a role for assigning work items to people: Workflow
participants are assigned one or more roles such as ”customer representative” or
”sales managemer” depending on the position in the organization and their skill set.
Human tasks in workflows are then assigned roles depending on the skills or authority
required. In BPMN, this is usually accomplished by defining a lane with the role
name and placing the BPMN activity in that lane.

When a such a task is executed in a workflow instance, the workflow management
system creates a work item and marks it with the specified role. The workflow
management system is then able to assign it to any available person from the pool
of participants that are in the specified role. This is usually performed using two
distinct mechanisms: The work item can either be assigned automatically to an
available person with the role (”push”) or the workflow management system offers
it as an option to eligible people active within the system who can then elect to
assign the work item to themselves (”pull”). From a workflow management system
perspective, once a work item has been assigned to a particular person, it becomes
an activity. As a side note, this activity is distinct from the BPMN activity element
(see [68]).

Therefore, the workflow management system must be able to support the man-
agement of work items and their assignment to specific users, which in the current
implementation solely consists of the ”pull” type of arrangement though an alterna-
tive implementation would be possible. However, the requirements of the distributed
Jadex WfMS also mandate that the work item management component can be repli-
cated on multiple nodes which can be activated or deactivated at any time. This
means the work item component has two options regarding the availability of work
items in the system:

• The work item is only created and available on a single work item management
component, often on the same node where the workflow instance has been
enacted though a separation of the functionality is possible (unitary mode).

• The work item is created on single work item management component, then
distributed among all available work item management components in the sys-
tem (replicated mode).

Both modes have different advantages and disadvantages over the other whose impor-
tance depends on the specifics of the workflow as well as the business environment:
In unitary mode, only a single copy of the work item exists. This means it can only
be requested by a single user, after which it becomes an activity until the user finishes
the task, relinquishes the work item or until the administrator removes the assign-
ment manually. Meanwhile, the work item will be filtered out with regards to other
users who will subsequently not be able to request the work item. Therefore, in the
unitary mode, processing of work items by participants is transactional and redun-
dant duplicated work is not performed. Additionally, if the work item management

8.2. Jadex Workflow Management System Implementation 185

component is active on the same node as the execution component, the workflow can
continue as soon as the work item results are submitted by the workflow participant.

However, a major disadvantage of this mode becomes apparent when the dis-
appearance, even temporarily, of nodes is considered. If the node with the work
item management component containing the work item disappears, the work item
becomes unavailable. If the work item is already assigned to a participant, the par-
ticipant will be unable to submit the results of the work item until the node returns.
Nevertheless, work items on other work item components remain available. This
means this failure mode could be regarded as a functional degradation in the face of
a fault which does not influence other parts of the system.

The replicated mode on the other hand avoids this problem: Once the work item is
completed, it is distributed among all available work item management components.
This means that even if the original node where the work item was created disappears,
workflow participants can still request the work item, perform the work and submit
the results.

On the other hand, this enhanced availability of work items comes with a price:
If a node or multiple nodes with work item management components get separated
from the system, workflow participants in both fragments can request the work item
without the other fragment being aware of the assignment. This means that the
work specified by the work item may end up being performed more than once.

However, the workflow instance itself will only accept a single result for a work
item before proceeding, with the result arriving at a later point being discarded. As
a result, the functional degradation in the replicated mode can result in redundant
work being performed instead of work items becoming unavailable.

Both modes can be advantageous in different situations and depend on the con-
text of the workflow. The implemented work item management component therefore
supports both modes, with a default being set in each execution component which
can be overidden by a property set in the workflow model for each human task. As a
result, the workflow designer may choose between the modes for each defined human
task and can select the one most appropriate for the situation.

Creation and distribution of work items as well as submission of work item re-
sult is managed by the IWorkitemHandler service, which has the following methods
available to perform those functions:

8.2.3 Authentication Component

Users of the workflow management system can have two main interactions with the
workflow management system: First, they can be part of workflows as workflow
participants who request, fulfill and submit work items as they are generated by the
workflow instances. Second, users can perform administrative actions with regard
to the system such as the manual enactment of workflow instances and the manual
removal or a work item assignment. However, not all users should be able to perform
all the functions and request all work items available in the workflow management
system. Additionally, unauthorized persons should not be able to interact with the

186
Chapter 8. Distributed Workflow Management System

Architecture and Implementation

system at all. As a result, the workflow management system must have a user
management that maintains such information about the user as well as providing an
authentication mechanism which can be used by the user to authenticate themselves
to the system.

This function is provided be the authentication component: The system main-
tains accounts of users of the workflow management system including all the infor-
mation associated with such accounts. The first important information are secrets
that are used to authenticate users. The current implementation of this function-
ality is based on passwords, however, alternative approaches based on identifying
information like secret keys could be implemented.

The second set of information regarding users pertains to their roles within the
system. In this regard, one has to differentiate two kinds of interactions with the
system which result in two different sets of roles that can be assigned to users:

• Workflow roles or simply roles refer to the potential participation of a users
with regard to workflow instances that are enacted on the workflow manage-
ment system. For example, a user may hold the workflow role ”technical sup-
port” which means that the user can participate in workflow by requesting
work items that the workflow specifies as being suitable for this role. As imple-
mented, workflow roles can contain other workflow roles as subroles and each
user account can include multiple roles. When the role of a user is resolved, a
set of roles is created that contains all the roles and their subroles as defined
by the user account. If the role specified in the work item is contained within
that set, the work item becomes visible to the user and can be requested from
the work item management component.

• Security roles define which actions the user can take with regard to the work-
flow management system. In order to specify these roles, every function the
workflow clients can invoke on the workflow management system such as en-
actment of workflow instances or removal of a work item assignment has an
associated privilege. Security roles can contain one or more privileges which
means that a user account which includes that security role is able to use the
functionality defined by the privilege. Similar to workflow roles, security roles
can include subroles and user accounts can be assigned multiple security roles.
Privileges of a user are determined by first creating a set which includes all
security roles and subroles, then forming a union of all privileges assigned to
those security roles. The use of a particular functionality is permitted if the
associated privilege is contained in this union set.

The authentication component itself does not enforce the authentication of users nor
their respective authorization regarding privileges. It merely contains the functional-
ity for authentication and the information regarding both workflow and security roles
and exposes them using the IAAAService interface. This interface offers a number of
methods for retrieving information about users and manipulating the user accounts
managed by the component. First, the createUser() and deleteUser() method allows

8.2. Jadex Workflow Management System Implementation 187

the creation and deletion of user accounts, both methods expecting an account name
as input.

Accounts created in such a way are assigned a random password to prevent abuse,
so a second call setting the password of the new account is required. This is accom-
plished through the modifyUser() method which includes three arguments: A set
of workflow roles, a set of security roles and finally the secret used to identify the
user. Any of the arguments can be set to a null value which causes the respective
information to be retained rather than overwritten.

Four methods are available to create and delete both workflow and security roles
called createRole(), createSecurityRole(), deleteRole() and deleteSecurityRole().
The methods for creating and deleting workflow roles each have a parameter
specifying the role name with the createRole() method also including a set of
subroles which may be empty.

The createSecurityRole() method also includes an argument for the name of
the security role but also has two additional arguments, one for defining the set
of subroles similar to the argument used in the createRole() method and a set of
privileges that are granted to the security role. Both of the latter arguments can
be left empty, however, defining a role with neither subroles nor privileges confers
no privileges to associated user accounts and is therefore of limited usefulness. The
deleteSecurityRole() method removes a security role from the system.

In order to query the workflow roles of a specific user account, two methods are
available: First, the getRoles() method which returns the roles specified in the user
account if the user account is supplied as an argument. Second, the getAllRoles()
method returns not only the workflow roles of the specified user account but also
resolves all the subroles and returns a union set of rules that includes all roles ex-
plicitely or implicitely granted to the user. The former method is primarily used for
managing used accounts while the latter one is used to identify work items that the
user is qualified to process.

A similar approach is used with regard to the security roles. The method get-
SecurityRoles() returns the security roles of a user account which can then be used
with the getSecurityRolePrivileges() method to query the particular privileges of the
security role as well as the getSecurityRoleSubroles() method in order to query the
subroles of a particular security role. In addition, the getUserPrivileges() method is
available which returns all the privileges granted to a particular user based on the
assigned security roles and their subroles.

In order to support the requirements of the distributed workflow management
system approach, multiple instances of the authentication component can be active
within the system, each being potentially maintained by different subunits of the
organization. Each of the authentication components contains its own set of user
accounts, workflow roles and security roles and can be administered separately. This
allows each of the organizational subunits to autonomously maintain their own set
of user data based on their workflow participants and other members of the organi-
zational subunit.

188
Chapter 8. Distributed Workflow Management System

Architecture and Implementation

Since multiple instance of the authentication component can be inserted into the
system, there is the possibility that two or more of them may contain conflicting
information regarding particular roles or users. As a result, an approach has to be
chosen to resolve such conflicts. While one of the requirements of the system is to
grant additional autonomy to organizational subunits, the current implementation
of the authentication component presumes that the system is still used in a generally
cooperative environment.

As a result, the current implementation of the authentication component is based
on an inclusive approach for dealing with conflicting information: If a single authen-
tication component is available that is willing to authenticate a user, declares the
user to be able to perform a certain workflow role or grants a user a certain privilege,
it is assumed this information is correct even if other authentication components are
unable to do the same. However, if necessary the component could be extended to
implement a more restrictive approach.

As mentioned, the authentication component only provides the necessary infor-
mation and mechanisms for authenticating users and authorizing their actions. The
enforcement of both the authentication and authorization is performed by the access
component which is described in the next section, which will also describe the secu-
rity approach used to shield the internal workflow management system components
from external user clients accessing the system.

8.3 Access Control and Security

In general, users of workflow management systems either use workflow client software
or a web user interface to access the functionality of the system. Only authorized
users are supposed to access the system while also being restricted depending on
the workflow roles and system privileges granted to their user accounts. As a result,
workflow management systems tend to include approaches limiting user access to the
system in order to enforce these requirements.

Using the default configuration, Jadex allows local service calls between services
provided by components on the same system while disallowing remote invocation of
services unless the service is specifically flagged as a public service that allows remote
calls, unless a secret password is used which allows access to the remote platform.

However, Jadex also allows tailoring access security based on a virtual network
concept (see [26]), where a platform can participate in trust networks which are
defined by a network name and an accompanying secret that allows access to the
network.

This mechanism is used to restrict access to the workflow management system
(see Figure 8.2). First, two virtual networks are defined which separate the security
domains: A client network which contains the workflow clients which allow users
to access the system. This can either consist of local workstations or web servers
containing a web-based workflow client. The second network is the system network
which contains all components of the workflow management system functionalities.

8.3. Access Control and Security 189

Figure 8.2: Enforcement of access is provided by the access component in Jadex
WfMS, which is used in combination with the security network concept of the Jadex
platform to shield the internal components of the system from the external workflow
client network (from [82])

Access to this network and knowledge of the network secret is restricted to persons
in charge of maintaining the workflow management system for their organizational
units.

As a result of this separation, the user workflow clients cannot directly access
the service interfaces of the workflow management system components, nor can the
system components access any client workstations or servers. The next step is to
provide a controlled path between the two networks which allow restricted access
based on the user account definitions provided by the authentication components.
This controlled access path is provided by the access component. The access com-
ponent is executed on a special node in the system which participates in both the
system and the client networks.

The access component provides an interface which the workflow clients can use
to access the system. Since the access component participates in both the system
network and the client network, it can be reached by the workflow clients and can
delegate requests to components of the workflow management system. As a result,
the access component is the gateway between the two networks. Due to this position,
it can restrict access based on user account information provided by authentication
components which it can access through the system network.

Figure 8.3 demonstrates how the authentication component assists the access
component by providing user account information. When a user uses the workflow
client to connect to the system, the client software uses the service interface of the
access component to authenticate the user to the system. The access component
uses the provided authentication information and calls either a local authentication
component or, if no local one is available, any of the remotely available ones and
requests to authenticate the user. The called authentication component can then
either authenticate the user directly if the user is known to the component locally,
or can successively call other authentication components in the system and request
authentication.

If none of the authentication components can authenticate the user, the authen-

190
Chapter 8. Distributed Workflow Management System

Architecture and Implementation

Figure 8.3: Authentication interaction using the access component which employs
the authentication components to authenticate users (from [82])

tication request is denied, otherwise the workflow client is authenticated to be in use
by the authenticated user. In either case, the information is communicated through
the access component to the connecting workflow client, which can then report to
the user whether the authentication was successful and the user is logged into the
system or, in case of authentication failure, provide an error message which offers
the user to an opportunity to correct the provided authentication information.

Once a user workflow client has been successfully authenticated, all further inter-
actions with the system are still passed through the access component, which allows
the access component to restrict access to the system based on user privileges. For
example, Figure 8.4 shows the interaction of a workflow client with the system when
requesting a work item created in unitary mode. The request is first received by
the access component. The access component then has the opportunity to verify
the user privileges and workflow roles with the authentication component to assure
proper authorization of the action requested by the user.

If the user is authorized to request a work item, that request is delegated to the
local work item management. Since the work item is being processed in unitary mode,
it only exists once in the system. This means that the work item management may
either have it available locally, in which case it can be assigned immediately, or, in
case the work item is available on a different work item management component, the
local one calls the component storing the work item and requests the transfer of the
work item. The work item is then transmitted to the local work item management,
after which it is stored by work item management component that is used by the
requesting user. The work item can then be locally assigned to that user and the

8.3. Access Control and Security 191

Figure 8.4: Accessing a work item through the access component in unitary mode
(from [82])

request is finalized.

Figure 8.5: Support of multiple client networks for different organizational units
facilitated by separate access components (from [82])

In addition to controlling the access to the workflow management system and
enforcing roles and privileges, the access component also allows the separation and
isolation of workflow clients and autonomous management of workflow client work-
stations and systems by organizational units. Figure 8.5 demonstrates such a sce-
nario. Two organizational units may need to be able to set up workstations and
access points for their employees in order to avoid unnecessary bureaucratic actions
on transfers or change of personnel.

This can be accomplished by separating the single client network into multiple in-
dependent ones. For each separate client network, a separate node is defined with an
access component that acts as a gateway for the client network. Both client networks

192
Chapter 8. Distributed Workflow Management System

Architecture and Implementation

in this scenario have independent network secrets which allows local management of
that client network using its secret without influencing other networks. Despite this
separation, all workflow clients still interact with the same workflow management
system and can share workflow instance, roles and other resources.

In conclusion, the access component of the workflow management system in com-
bination with the secure virtual networks allow the restriction of workflow client
access to the system based on the user information stored in the authentication com-
ponents. Furthermore, it enhances local autonomy of the overall system by allowing
the creation of separately managed and isolated workflow client networks while still
maintaining the global control of the shared workflow management system.

The next section will proceed to the analysis phase of the BPM lifecycle. For
this phase, detailed monitoring of current and former workflow instances is required,
which must be recorded and stored in a persistent way for later analysis. Therefore,
the monitoring approach of Jadex WfMS will be introduced, which includes not
just the monitoring component of the workflow management system but also the
structure of the events used to record occurrences within the system.

8.4 Workflow Monitoring

The monitoring component of Jadex WfMS is primarily responsible for supporting
the monitoring phase of the BPM lifecycle described in section 2.7. In section 1.2
it was argued that the monitoring phase touches two of the research goals for long-
running autonomous business processes: On the one hand organizational agility must
be supported by allowing organizational subunits to set up and perform their own
monitoring independently. On the other hand the system must be sufficiently robust
to reliably monitor the long-running workflow instances executing on the system.

However, the purpose of the information gathered during the monitoring phase
is not only to provide real time feedback concerning active workflow instances but
also to facilitate the analysis phase of the BPM lifecycle in which the workflow is
inspected and analyzed. As a result, while the monitoring component itself should
meet the goals necessary for the monitoring phase, the information gathered must
support the goals necessary for the analysis phase: Here, a key aspect regarding long-
running autonomous business processes is to link action that the workflow performed
during execution with the strategic goals of the business process. This has to be done
despite the flexible execution paths of the workflows involved.

In order to reach the goals of robustness and organizational agility, once again
the monitoring component is implemented to support distribution and replication
of multiple instances (see [84] and [88]). The component provides a service imple-
menting the ILogService interface which offers the logEvent() method allowing all
parts of the workflow management system to add new events to the system. In
the first implementation of the monitoring component, replication and distribution
was achieved by including a distributeEvent() method in the service interface. This
method was used by the receiving monitoring component to distribute the received

8.4. Workflow Monitoring 193

event to the remaining monitoring components in the system.
Since events can either be transmitted to a monitoring component or lost, there

can be no disagreements about the content of events, restricting inconsistencies to
missing events instead of conflicts even in the case of partitioning. This means that
the system represents a BASE (Basically Available, Soft State) approach that can
avoid conflicts due to the type of data being recorded.

However, the monitoring component being responsible not just for recording but
also distributing events had two disadvantages: First, the components used local stor-
age which meant that the data was replicated in each of the monitoring component
nodes when a lower number of replications would be sufficient to ensure robustness.
Second, it caused a high amount of traffic since the events were transmitted to every
monitoring node in the system.

As a result, the monitoring component was revised to be based on the distributed
storage system described in section 7.6.2. The enhanced monitoring component
receives the event through the service implementing the ILogService interface, then
proceeds to store it in a shared keyspace within the distributed storage system. The
storage system performs the necessary replications and maintains them in case of
disappearing nodes and allowing other monitoring components to access the events
through the system. This approach means that the number of replications can be
set in such a way that it is high enough to maintain a reasonable level of robustness
but low enough to avoid unnecessary overheads.

Figure 8.6: Event types used in the monitoring system with the bulk event type used
to agglomerate a large number of events for bulk transfers (from [84])

As mentioned, the monitoring system must not only ensure the availability of the
gathered information but also include the right information to allow a connection
with the strategic planning using the workflow model as the basis. The monitoring
of the workflow management system should cover a wide aspects of the workflow
execution. Therefore, most aspects that are involved in the execution of GPMN
workflows are capable of recording events that have occured. Such aspects include

194
Chapter 8. Distributed Workflow Management System

Architecture and Implementation

any part of the system that can be instantiated or executed like component instances,
goal and plan instances, task, work items and so on. Each of these aspects can
therefore be a source of an event, which is part of the information stored within the
event. The event also includes a timestamp of the point in time when the event was
created.

In order to further refine the events that can be issued by the event sources in
the system, five event types were defined which cover the range of recorded events in
the system (see Figure 8.6). As a result, all events that are recorded by the system
are one of these types (see [84]):

• Creation events denote the creation of the event source. For example, if a
workflow is enacted, the first action of the resulting component instance is
to record a creation event with the monitoring component that describes the
creation of this component instance.

• Modification events can be issued by an event source in order to record a state
change of the source. A typical example of this are changes of the business
context of GPMN workflow instances.

• Occurrence events simple denote when an action took place. For example, if
a message is received by a component instance or if an internal user event is
triggered within a component an occurrence event is recorded to document it.

• Disposal events denote the end of the life cycle of a source. When recorded,
it denotes the termination of the source with the implication that no further
events can be expected.

• Finally, bulk events represents a special type of event that is only used to
agglomerate multiple events into a single event for bulk transfers. This reduces
overhead if a large number of events need to be transfered. A common case
are bulk transfers of events for analysis.

Unlike task-based modeling languages, GPMN does not provide a fixed execution
path except as part of the BPMN fragments in plans. As a result, during execution
it is hard to associate the action being performed with the goals that are part of the
GPMN model. The events should therefore include sufficient information to provide
the user of the system with a view that connects the actions performed as part of
the workflow with the business goals defined in the workflow model.

However, since the monitoring part of the workflow management system is dis-
tributed, the events need to be replicated and distributed to ensure availability. This
means multiple copies of events are transfered which combined with the fine gran-
ularity of the events being monitored means that the events should be as compact
as possible to keep the data being transmitted at a minimum. While the compact
message extension described in section 7.6.1 helps to reduce message overhead, the
information stored within the events should also be as small as possible.

As a solution for this problem, events also include a cause reference in addition
to the source reference. While the source reference denotes the origin of the event,

8.4. Workflow Monitoring 195

Figure 8.7: Example of the source-cause hierarchy used to establish causalities be-
tween different events (from [84])

the cause reference signifies the reason why a particular event has occurred. This can
then be used to create a source-cause hierarchy which allows the association of event
sources with their reasons as shown in Figure 8.7 while only storing one additional
reference in each event. This means that the events themselves are small in size while
still allowing the association of low-level actions with strategic high-level goals.

For example, if a GPMN workflow is enacted, a component instance representing
the workflow instance is created. This workflow instance then activates the primary
workflow goals which creates a workflow goal for each of them. This goal instance
creation is recorded by storing a creation event with a reference to the goal instance
as the source. However, the creation event also contains a reference to the workflow
instance as the cause for the event. This denotes that the cause for the creation of
the goal instance was the workflow instance.

This pattern repeats down the cause hierarchy: Once plan instances are created
and executed, creation events for those instances are also created with the cause of
the plan instance creation being the goal that is connected by a plan edge. However,
the monitoring of events extends beyond plan execution. While a Java-based plan
appears monolithic, BPMN plans allow additional granularity.

The next level in the hierarchy within BPMN plans are the plan threads which
denote execution threads that are being followed as part of the plan. Based on the
BPMN execution model, plans start with a single plan thread but additional threads
can appear in case of forking behavior such as the one triggered by parallel gateways
causing additional plan threads to be created. Plan threads can then execute BPMN
activities as part of the plan, which again records creation events when the execution
starts and a disposal event when the execution finishes.

Event monitoring can also extend into the work item management. If a BPMN
activity consists of a human task which causes the creation of a work item, it also
causes creation events and corresponding disposal events to appear in the monitoring
system. The final recorded event source in the system is the workflow participant
activity for which (1) a creation event is issued once a work item is assigned to a
workflow participant and (2) a disposal event is stored once the assignment becomes
invalid. However, assignments can become invalid not just due to the user finishing
the assignment but also if the work item becomes unassigned due to administrative
action or because the workflow participant decided to return the work item to the
system.

196
Chapter 8. Distributed Workflow Management System

Architecture and Implementation

Figure 8.8: The monitoring support being used to inspect a workflow instance dis-
played as a Gantt chart (from [84])

Events recorded by the monitoring components can then be used to perform real
time as well as post-execution analysis of workflow instances using a monitoring
and analysis tool shown in Figure 8.8. Currently the tool displays the executing or
executed workflow instance in a Gantt chart. The tool already sorts the available
event sources based on their typical position in the hierarchy with the component or
workflow instance itself being listed first.

However, the monitoring system which the analysis tool uses to retrieve the
events associated with a workflow instance consists of the set of distributed monitor-
ing components of Jadex WfMS which in turn uses the distributed storage system
enhancement of the Jadex platform. This means that in some cases such as network
partitions, there may be missing events. This is due to the fact that the storage
system used by the monitoring system is based on an eventually consistent model
(see section 7.6.2) which means that while a consistent state is eventually reached,
there are transitory states in which some information may be missing.

However, the analysis tool is able to compensate to a certain extend for missing
events by employing some heuristics. For example, if a disposal event of a plan
instance is recorded, it contains the timestamp when plan execution was finished as
well as the goal that was the cause of the plan execution in the first place. In such
a case, if the monitoring component is unable to supply the corresponding creation
event for the plan instance, the plan instance can still be displayed with some minor
inaccuracy in the chart.

This is because the timestamp of the plan instance creation has a lower bound,

8.4. Workflow Monitoring 197

namely the creation of the event cause which in this case is the goal instance. There-
fore, the monitoring and analysis tool can as a preliminary estimate set the beginning
of the plan instance to the same timestamp as the creation event of the goal instance.
When, at a later point, the creation event for the plan instance becomes available,
the tool will automatically correct the starting point of the plan instance to match
this creation event.

Since even a moderately complex workflow instance has a large number of event
sources, the tool allows the user to perform ”drill-downs”: By selecting a particular
event source, the view changes and the tool narrows the event sources down to those
that can be transitively linked to the selected source.

For example, the user can select a goal instance as the drill-down target. The
tool will then show the goal instance as the first item on the Gantt chart and only
display the subgoal and plan instances as well as plan threads, tasks, work items and
user activities whose cause can be linked to the selected goal instances. This allows
a user performing a workflow instance analysis to not only deduce the associated
business goals of the more low-level aspects up to and including the performance of
activities by workflow participants but also the time intervals that were necessary
for low-level aspects like tasks but also higher-level ones like goals.

In addition to monitoring the execution of real world workflow instances, it is
sometimes also useful to analyse a workflow model before it is executed under real
circumstances for the first time. As a result, the next part of this work will present
an approach for accomplishing such a pre-execution analysis for GPMN workflows
which allows a workflow designer to validate a propsective workflow model before it
is employed in practice.

198
Chapter 8. Distributed Workflow Management System

Architecture and Implementation

Chapter 9

Workflow Model Analysis and
Validation using Simulation

One of the key differences of long-running autonomous business processes and work-
flows compared to production and administrative workflows is that their models are
often used for a single execution cycle after which the process or workflow model is
changed to apply the lessons learned from experience and integrate new approaches
(see section 1.2). Compared to production workflows, this means that the traditional
post-execution analysis phase has a reduced importance since the gained experiences
from an execution cycle generally relate to the subject matter of the workflow rather
than the workflow itself.

However, the long-running nature of the processes introduces a different demand
on the analysis phase of the BPM lifecycle: Due to the long execution time, it is an
explicit aim to include as many contingencies for predictable changes in the business
environment in the workflow model before the workflow instance is enacted. Addi-
tionally, the long execution time increases the chance of design and implementation
errors to be exposed during execution. Finally, the lack of explicit execution paths
in goal-oriented workflow models increases the need for workflow designers to receive
feedback on the actual execution behavior of their workflows. These issues result in
a strong need for an approach that provides runtime information about goal-oriented
workflows before the workflow is actually deployed and enacted in the intended real
world situation.

This means that the analysis phase has to be performed before a real world
deployment of the workflow, potentially even before the design or implementation
phase has finished. As a result, such an approach has been developed for GPMN-
based workflows to assist workflow designers in developing the workflow models (see
[86]), which will be presented here.

While goal-oriented workflow emphasize the need, the demand for a
pre-deployment analysis is not unique to goal-oriented workflows in that workflow
designers generally have a need to produce workflow models in which the number
of flaws are minimized. Generally, two main approaches are available to ensure a
level of correctness of implemented workflow model, both of which have certain

199

200
Chapter 9. Workflow Model Analysis and Validation using

Simulation

advantages and disadvantages. The first approach is a formal verification of
the workflow model. This approach takes the implemented workflow model and
performs a static analysis to prove that the model either complies or fails to comply
with certain constraints. A number of formal verification approaches have been
applied to workflow models with certain success including graph reduction [139],
model verification [48] and propositional logic [13].

Formal verification approaches have the advantage of providing a degree of prov-
able correctness: If implemented and applied correctly, the facts that are derived by
the verification process are guaranteed to be correct under the given circumstances,
providing a high degree of confidence. The disadvantage of such approaches are the
limitations of what can actually be proven about the workflow models. For example,
a number of techniques are available to prove model correctness such as the termi-
nation of parallel branches in the model with corresponding join elements. However,
in case of non-trivial semantics of the workflow such as tasks that are written in a
sufficiently powerful (Turing-complete) programming language, an automatic proof
is not possible.

This limitation of formal verification approaches is compounded if the workflow
is subjected to a model conversion processes before execution. In this case, not only
the correctness of the original workflow model but also the conversion process itself
has to be proven correct for the strong guarantees to be applicable to the results.
Finally, the executing workflow engine also requires a proof of correctness to ensure
that the behavior of the enacted workflow matches the semantic definitions of the
model.

Due to these limitations, an alternative approach which provides weaker guar-
antees but a broader applicable scope can be chosen to increase confidence in the
behavior of enacted workflows. This approach is based on enacting the workflow
in a simulated environment and systematically performing carefully chosen tests to
assess the behavior of the workflow instance. This approach is therefore based on
the actual behavior of the workflow during runtime instead of basing it on the static
analysis of the workflow model.

After validating the correct behavior of the workflow with regard to the performed
tests, a reasonable empirical assumption can be made that the workflow will behave
in the expected manner if subjected to the same circumstances. However, unlike the
formal verification approach, this approach of validating workflows does not provide
absolute certainty of correctness. Nevertheless, it is capable of providing a reasonable
level of assurances regarding workflow behavior and, unlike formal verification, can
validate workflow behavior with non-trivial semantics.

A number of implementations of this approach exist in the market, examples
including tools like L-SIM [159], iGrafx Process [111], Casewise Corporate Modeler
Suite [5] and the ARIS Toolset [140]. Such simulation-based tools usually target a
specific workflow language such as BPMN in case of L-SIM or are part of a larger
workflow or business process software suite and are tailored towards the workflow
models that are part of that particular suite. In addition, many tools tend be made

201

to assist in optimizing business processes instead of validating correctness and there-
fore primarily target performance figures as is the case in the ARIS Toolset which
offers a number of features assisting in the measurement of operating performance
of workflows.

The approach presented here instead primarily attempts to address the validation
requirements for goal-oriented workflow models through the use of test cases provided
by the workflow designer in order to assess the expected behavior of the designed
workflow model.

Workflow behavior depends on language features that define different execution
paths or branches. In BPMN, these features primarily consist of the gateway model
elements, which split the control flow either exclusively or in a concurrent manner,
thus redirecting the excution along different control flow edges depending on runtime
parameters.

The same mechanism is more indirect in GPMN workflows: The workflow context
defines the business situation which then causes different goals to activate and plans
to be executed. This subtlety in the execution path is the reason for process designers
experiencing issue when attempting to understand the execution flow of a goal-
oriented workflow. In both cases the primary source which influences these points
are the result of actions by a workflow participant.

For example, when used to design workflow models at Daimler AG, the non-
obvious behavior of goal-oriented workflows was noticed by workflow designers. In
order to ensure a predictable behavior during execution, many of them resorted to
the use of manual tests: The workflow designer would enact the current version of
the workflow model in a test environment and then manually perform the actions
of the workflow participants using the workflow client while evaluating the resulting
workflow behavior using the monitoring system. The performed tests were usually
deliberately targeting common situations and corner cases that could occur during
a real world enactment.

Since the manual tests required a considerable amount of time and had the risk
that a workflow designer would, at any point in time, omit a test due to negligence,
the goal of the simulation-based test system was to assist workflow designers by
allowing them to create a set of important standardized tests for each workflow
model which could be performed and validated automatically. This also means that
the process execution can be executed in a mode that allows it to finish ”as fast
as possible” or, in other words, the system is designed to simulate the environment
within an accelerated time frame and allow the simulation to finish as quickly as the
hardware allows. This approach partially resembles the use of test system in software
development, where test cases are defined and executed regularly and automatically
to avoid the introduction of errors into software code.

However, the input provided by workflow participants in non-trivial workflow
models can be quite broad, resulting in an extremely large input space for possible
values to simulate. This means that the simulation complexity quickly increases
beyond what can be simulated within a reasonable time frame. As a result, the

202
Chapter 9. Workflow Model Analysis and Validation using

Simulation

simulation model and coverage will necessarily be limited. This means that unlike
a full coverage test or a formal verification, a level of uncertainty will remain as the
system relies on the workflow designer to provide adequate tests for the workflow
model.

9.1 Validation Approach and Client-side Model

While Jadex provides certain facilities for simulation including environments (see
[85]), the facilities to control time or events are most useful in context of simulating
workflow environments. This means a simulation environment needs to be imple-
mented to support validation of workflows with a simulation-based approach. Since
the goal of any simulation model is to closely resemble a real operating situation, the
existing workflow management system can act as the starting point of the simulation
environment with certain adaptions in order to simulate the business environment.

Figure 9.1: Structure of the interaction between subsystems in the simulation-based
testing approach (from [86])

However, in order to complete a fully automated environment, a simulation model
for the workflow participants needs to be implemented. For this, as shown in Figure
9.1, the standard workflow client application used by workflow participants can be
replaced by an implementation which simulates the interactions of the participants
with the workflow management system since the participants are unavailable dur-
ing simulation. This simulated workflow client application has to be supplied with
a behavior model simulating workflow participants. After automated enactment,
the simulating workflow client application will then provide the information to the
workflow management system based on this behavior model.

In particular, the application will request the work items made available by the
workflow management system, process them using the behavior model, then submit
the results back to the workflow management system in order to advance the workflow
instance. Meanwhile, the application will also use the monitoring system to gather
information about the workflow instance for analysis by the workflow designer.

In theory, the behavior model for workflow participants can be as complex as
necessary in order to provide a realistic simulation of a real world workflow enactment
and processing. However, in order to achieve the goal of a behavior validation of
workflow models, the workflow participant model has been somewhat simplified.
This simplification also allows the system to assist the workflow designer to provide
an adequate behavior model for the workflow participants.

The simulation model of the workflow participants is based on the client-side
model which uses the meta-model shown in Figure 9.2. This meta-model is based

9.1. Validation Approach and Client-side Model 203

Figure 9.2: Meta-model of the client workflow tree model used by the simulation
workflow client (from [86])

on the fact that the interaction of the workflow participants with the workflow man-
agement system is limited by the workflow model itself. The meta-model therefore
allows the simulation workflow client to derive a simulation model for the workflow
participants based on the possible inputs of the workflow model, creating the initial
structure for the client-side model.

This initial model consists of three primary elements, which are used to generate
the tree-based client model from the selected workflow model. The first element used
in this tree structure are workflow nodes. Workflow nodes represent workflows or sub-
workflows as they appear in the initial model. The selected workflow is represented
by such a workflow node but any sub-workflows contained within the model are also
represented in the model with such a node. Workflow nodes of workflows that contain
sub-workflows represent this relationship by maintaining references to the workflow
nodes of the sub-workflows.

In case of GPMN workflows, referenced workflow nodes can also include BPMN
plans since the client simulation is primarily concerned with the potential enactment
of a workflow model rather than the circumstances of the enactment, which from the
perspective of both the workflow participants and the simulated workflow client is
irrelevant.

In theory, workflow models allow the workflow designer to define cycles of sub-
workflows. For example, if a sub-workflow enacts a workflow instance based on the
workflow model of its parent, such a sub-workflow cycle is created. These cycles
result in the sub-workflow model becoming a graph rather than a tree. However,
such cycle structures are relatively rare in most real world workflows and therefore
workflow designers expect a tree model to be used to represent the structure.

As a result, a tree structure is the form desired by the workflow designer but it

204
Chapter 9. Workflow Model Analysis and Validation using

Simulation

may, in rare cases, not match the actual structure of the workflow model. Therefore,
as a compromise solution, the client-side model still follows the tree structure but
uses link nodes to represent the rare case in which a cycle is present. If such a cycle
is detected during the generation of the client-side model from the workflow model,
the second and later occurrences of the same sub-workflow node is replaced with a
link node containing a reference to the original workflow node. The link node itself
contains no further reference to other workflow nodes and therefore breaks the cycle
in the graph. If the workflow designer selects a link node, the referenced workflow
node is selected.

This approach presents the workflow designer with the expected tree model while
also allowing for the rare cases in which the workflow graph contains cycles.

GPMN and BPMN workflow nodes are presented to the user as visually distinct
but are not distinguished as such within the simulation model. However, BPMN
workflows can include references to task nodes. Task nodes are representations of
tasks to be performed by workflow participants that result in the generation of a
work item within the workflow management system and therefore need to be dealt
with by the simulated workflow client.

The outputs and inputs of such tasks are defined in the workflow model as typed
parameter, including whether the parameter is considered to be information deliv-
ered to the workflow participant performing the task (input parameter) or if it is
considered to be information that the participant needs to provide as a result of
their work (output parameter). In some cases, the parameter can be specified to be
both an input and an output parameter, which is done when the workflow participant
is expected to modify the information.

Parameters that are specified as input parameters in the tasks of a BPMN work-
flow are represented in the client model as parameter nodes. These parameter nodes
are referenced by the workflow node representing their workflow. The parameter
nodes are the meta-representation of the information a workflow participant needs
to provide during the execution of the workflow. This means that in order to simu-
late the behavior of the workflow participants, the simulation workflow client has to
supply the information defined by the parameter nodes.

This behavior is defined by scenarios and value sets which are supplied by the
workflow designer. The next section will introduct both concepts and show how
they can be used to complete the simulation model used to validate goal-oriented
workflow models.

9.2 Scenarios

After the initial client-side model is generated from the workflow model, it is pre-
sented as a tree to the workflow designer. The parameter space of possible inputs for
a single parameters tends to be very large, such as in case of e.g. 32-bit integer values
with billions of possible states, or even not properly bounded as in the case of string
values. Compounding this issue is the fact that the complexity of an exhaustive test

9.2. Scenarios 205

sweep of the full parameter space of all parameters increases exponentially, preclude
such a test even in relatively trivial cases.

As a result, the test coverage necessarily has to be partial, which means that
there is a chance that an error may not be found because it falls within the part of
the test range that has not been tried. Therefore the validation method presented
here relies on the process knowledge of the workflow designer in order to define a set
of tests that cover critical issues and corner cases regarding the workflow.

Figure 9.3: Testing procedure used to validate workflow models (from [86])

The full test procedure used to validate workflow models using simulation in this
approach is shown in Figure 9.3. As shown in section 9.1, the simulation client ap-
plication generates a client-side model as a base for the designer to add the behavior
regarding the parameters that must be supplied during workflow execution. Since the
complexity of a full parameter sweep exceeds reasonable testing times, the workflow
designer is tasked with supplying a reasonable set of value that need to be tested.

When creating a workflow model, the workflow designer has a general idea of the
situations in which the workflow is going to be used in a business environment. In
addition, the workflow designer may be aware of some corner cases that depend on the
workflow model. The presented validation system therefore uses these notions and
allows the workflow designer to create scenarios, which represent well-defined test
cases for certain situations against which the workflow model needs to be validated.

Scenarios consists of three parts: First, the input values used in the scenario to
simulate the inputs of the workflow participants. This can consist either of single
values, discrete sets of values or, in case of integer values, a range of values as specified
by the workflow designer. As a result, each scenario contains a number of of tests
based on every possible combination of parameter values available.

The second part of scenarios are the output values selection. Workflow instance
may generate a large number of output values depending on the tasks executed and
the supplied input values. However, not every output value is necessary to validate
the correct behavior of the executed test. Therefore, the workflow designer can reduce
the validation data by selecting only the output values necessary for validation.

The final part of a scenario is the validation function. This function is used
to validate the correct behavior by comparing the results of a simulated workflow
execution with the expected results as defined by the workflow designer as part of the
function. Since a large variety of validations are possible which are heavily dependent
on the workflow and the business environment, the validation function is supplied in
the form of a Java class in order to allow the workflow designer as much definition

206
Chapter 9. Workflow Model Analysis and Validation using

Simulation

range as possible. The goal of the validation function is to generate a report for the
workflow designer whether the validation of the model has succeeded or, if it has
failed, what condition led to the validation failure.

Once the scenarios are added to the base client-side model, the simulation model
is considered complete. It consists of the workflow model, the workflow management
system and the simulation client application with client-side model including the
scenarios defined by the workflow designer.

This simulation model can then be used to validate whether the workflow model
conforms with the specified validation function. The simulation client application
will automatically enact a workflow instance for every parameter combination defined
by the parameter sets of the scenarios. During execution, the selected output values
are gathered as long with information from the monitoring system which includes
order of subprocess and task execution and exceptions that may have occurred. This
information about the performed test is then passed to the validation function of the
scenario which generates a report for the workflow designer.

This report can then be used to correct errors found in the workflow model. Since
the system can be invoked and executed automatically, it can be regularly applied
during the modeling of the workflow. Provided the workflow designer defines a good
set of scenarios that reflect both critical cases as well as the intended real world
deployment situation, a reasonable assurance can be reached that the developed
workflow model will perform as expected once deployed.

9.3 Example Use Case

As mentioned at the beginning of this chapter, a motivation for the development of a
test system was the labor-intensive testing cycle that was used by workflow designers
using GPMN workflows at Daimler AG. Therefore, the use of the simulation-based
test system was demonstrated by applying it to a workflow developed by Daimler
Group Research and using it to identify an error in the workflow model.

The chosen workflow is considered to be a change management process (see [30]).
Change management processes are used to coordinate the organization and labor
necessary to introduce a change to an existing product which is already in produc-
tion. They ensure that adaption to aspects like changes in the physical geometry of
the product or changes to the production line proceed smoothly and prevent early
mistakes that can result in production slow downs.

The chosen workflow is very large and complex and the details often contain busi-
ness secrets of Daimler AG. As a result, this section will focus on a smaller subprocess
as shown in Figure 9.4, which concerns itself with the gathering of information about
the planned changes to the product, locating key personnel and allocating necessary
resources. The output produced by this part of the process is a detailed specification
of the changes and the requirements to execute them, both of which will be used in
a later part of the process.

Like most GPMN processes, this subprocess starts with a primary goal which

9.3. Example Use Case 207

F
ig
ur
e
9.
4:

G
oa
lh

ie
ra
rc
hy

of
th
e
ac
ti
ve

ch
an

ge
m
an

ag
em

en
t
w
or
kfl

ow
us
ed

to
ev
al
ua

te
th
e
si
m
ul
at
io
n-
ba

se
d
va
lid

at
io
n
ap

pr
oa

ch
,c

re
at
ed

w
it
h

an
ea
rl
y
ve
rs
io
n
of

th
e
G
P
M
N

ed
it
or

(f
ro
m

[8
6]
)

208
Chapter 9. Workflow Model Analysis and Validation using

Simulation

aims to generate a description of the planned change. The goal is then subdivided
into multiple subgoals such as defining the lead person responsible for the change,
generating a decription of the planned solution, determining the parts involved and
finally the completion of the change statement.

These goals then get further refined until plans can be designed and attached.
The subprocess uses multiple conditions on both plans and goals to ensure that
prerequisites are met by the workflow context before a particular goal is pursued or
plan executed.

When the workflow model was first implemented, it contained an error in one
of the BPMN fragments which are used as plans in the workflow model that the
workflow uses to reach the specified business goals.

Figure 9.5: Excerpt of the Affected Part Determination plan from the change man-
agement workflow (from [86])

The plan containing the error is called ”Affected Part Determination” which is
used to assess what physical parts of the product that are affected by the planned
product change. As part of the plan, the lead developer in charge of the change
process is required to enter these parts so they can be added to the resulting set. In
order to do so, the lead developer has a choice between three different methods of
specifying the affected part.

As the first choice, the lead developer enters a list of serial numbers of the affected
parts. The second available option is to provide a drawing which is used for part
identification. As a third way, the lead developer can enter a structured description
of the affected parts.

These three options were implemented as part of the BPMN plan fragment as
shown in the cutout of the BPMN fragment in Figure 9.5. The first task in this part
of the plan generates a work item in order to let the lead developer chose the desired
entry type. This work item contains a list of three things detailing the available
entry types which are presented to the lead developer as three options. The lead

9.3. Example Use Case 209

developer can chose one of the options which causes the associated string value to
be committed as the result of the work item.

Once the work item is returned, the chosen string is passed to the exclusive-or
gateway in the BPMN fragment. Here, the string is compared to the strings avail-
able on the outgoing edges behind the gateway branch. The process then proceeds
to execute the branch of the fragment that matches the string chosen by the lead
developer, which then provides a new work item that supports the chosen type of
entry.

However, in the first implemented version of the process, one of the strings on
the branches did not match a corresponding string as generated by the type selection
task. Since none of the sequence edges following the gateway is marked as a default
edge, the workflow would terminate with an exception if the option containing the
error was chosen by the developer.

Figure 9.6: Simulation client showing the client-side model for the plan excerpt and
demonstrating the parameter selection for simulation (from [86])

This error was found when the simulation-based testing system was used to val-
idate the workflow model. In one of the scenarios created by the workflow designer,
the designer would test each branch of the three-choice option. In order to limit
the test complexity for this particular scenario, every other part of this workflow
except the section shown in Figure 9.5 was supplied with a single value parameter
set. However, for the task making the choice of entry, each of the three strings were
added to the parameter set by selecting them in the simulation client displaying the
client-side model (see Figure 9.6).

In addition, the test scenario was also used to validate the input methods by
adding multiple mock entries for the parts that were added to the parameter sets
of each of the data entry method tasks, which are used by the workflow as part
identifications for the parts affected by the change request during the simulated
workflow execution.

Based on this client-side model, the simulation workflow client computed that the
scenario had a total complexity of 972 test runs before the specified parameter space
was sweeped. The scenario was then executed on a workstation featuring an Intel i5
CPU clocked at 2.67GHz together with 4GiB of working memory. The simulation

210
Chapter 9. Workflow Model Analysis and Validation using

Simulation

of all 972 simulated executions finished in less than a minute on this machine, a
considerable improvement over the manual testing previously employed.

These tests also included the selection of the data entry option that contained
the branching error. This led to an exception being raised during simulation and the
simulated workflow was terminated. The monitoring system recorded these events
which were then requested by the simulation workflow client and recorded in the
simulation log along with information about the exact situation being simulated
such as the set of parameters being used to simulate the workflow participants.

This simulation log which contained all performed tests and their associated
information as shown in Figure 9.3 was then passed to the validation function which
used the information in the log to generate a simulation result report for the workflow
designer. In this report, the occurrence of the exception was highlighted, leading the
workflow designer to examine the part in which the error had been generated. Using
the parameter specifications used, the workflow designer was quickly able to identify
the issue of mismatched strings in the workflow branch and could correct the error
by ensuring a pair of matching strings.

9.4 Summary of the Simulation-based Testing Approach

As a result, the simulated testing approach was convincing in terms of improving
upon the previous manual testing procedure for goal-oriented workflows, reducing the
impact resulting from the issue of the non-obvious execution paths of GPMN-based
goal-oriented workflows. While the client-side modeling is still somewhat limited,
it could be improved by adding additional considerations such as timing and logis-
tic concerns into account in order to produce a simulation model closer to a real
world deployment of the workflow model. Nevertheless, the testing options available
already grant the workflow designer a considerable amount of assurance that the
workflow model will perform as intended. In addition, as a side effect of including
the BPMN fragment plans in the simulation, the simulation-based testing system is
also capable of simulating and validating plain BPMN workflow models using the
same approach.

Furthermore, the simulation-based testing approach allows the workflow designer
to perform a workflow model analysis ahead of time, representing the analysis phase
of the BPM lifecycle as used for GPMN-based goal-oriented workflows. For this
phase, two research goals were set in section 1.2 that are specific to the necessities
of long-running autonomous business processes. First, the conflict between the the
necessary workflow model agility which results in a complex workflow behavior and
the requirements of a BPM analysis phase to associate the workflow behavior with
the workflow model.

The testing system accomplishes this by combining the direct simulated execution
of the workflow model along with the detailed monitoring available by the workflow
management system. This allows the workflow designer to quickly associate post-
enactment events with elements in the workflow model.

9.4. Summary of the Simulation-based Testing Approach 211

The second research goal for the analysis phase was to allow the workflow de-
signer to connect the strategic and operational aspects of the business process during
the analysis phase of workflow models. The combination of the goal-oriented work-
flow model and the client-side simulation model in combination with the monitoring
system also allows the workflow designer not only to record all the action being
performed by the workflow instances during execution but associate them with the
business goals that are defined in the workflow model, which were modeled in the
workflow design and implementation phase to match the real business goals of the
organization for the business process being modeled (see chapter 4). This imme-
diately provides a strong link between the strategic layer represented by the goals
and operational layer represented by the actions and work items generated during
the execution of the workflow instance. The simulation-based validation approach
therefore represents a viable option for the analysis phase of the BPM lifecycle which
takes the demands of long-running autonomous business processes into account.

Being representative of the analysis and therefore final phase of the BPM lifecy-
cle, this validation approach also concludes the coverage of the current system used
to support long-running autonomous business processes. The next chapter will sum-
marize the various aspects of the system and will demonstrate how they contribute
towards the originally set research goals.

212
Chapter 9. Workflow Model Analysis and Validation using

Simulation

Chapter 10

Application Scenario and
Conclusion

This chapter will summarize the presented agile business process management system
and its parts, demonstrate an application scenario which was carried out in cooper-
ation with Daimler AG and establish how each of the research goals for supporting
long-running autonomous business processes as presented in chapter 1 is addressed
by the system. Finally, the current limitations and potential improvements are pre-
sented.

An overview of the system is shown in Figure 10.1. The system currently sup-
ports two languages for modeling workflows: First it includes an implementation
of the standardized task-based language BPMN. Based on this language, the sys-
tem supports the newly-developed goal-oriented language GPMN, which uses BPMN
workflow model fragments as plan elements.

For designing and implementing GPMN business processes and workflows, two
editor tools are available, one for modeling BPMN plan fragments and another for
modeling goal-oriented GPMN models that use those fragments. As an option, the
BPMN editor tool can also be used to develop standalone BPMN workflows.

Both editors are capable of generating executable workflow models provided the
workflow designer supplies the necessary execution detail. In the case of the BPMN
editor, the model consists of the BPMN 2.0 model format as defined in the speci-
fication. However, it includes some extensions to support features that are specific
to the Jadex Active Components Platform which is used to execute the workflow
instances resulting from the model. These extensions include information such as
platform-specific configurations and services that are required or provided as Jadex
Active Component services.

The BPMN engine is available as part of the Jadex Active Components Platform.
Its parser can directly read the BPMN 2.0 models generated by the BPMN editor
in order to construct an executable BPMN engine model. Using this engine model,
BPMN instances can be generated which are executed using an internal BPMN
interpreter.

GPMN workflow models however are converted to a BDI agent modeler before

213

214 Chapter 10. Application Scenario and Conclusion

F
igure

10.1:
O
verview

of
the

system
used

to
support

long-running
autonom

ous
w
orkflow

s

215

they are processed and executed by the BDI engine in the platform. The original
GPMN modeler can be saved by the editor in the GPMN intermediate format and
converted to a BDI model at will. A conversion from BDI models into GPMN inter-
mediate models is unsupported since BDI includes elements that are not currently
available in the GPMN language.

Since both BPMN and GPMN workflows are executed by the platform as active
components, in both the case of BPMN directly and in the case of GPMN as BDI
agents, the complete tools support available for Jadex can be applied on those work-
flows. This includes tools such as the debugger for stepping through the workflow
as well as the communication analyzer for inspecting the communication behavior of
workflow instances.

The Jadex platform was also used to implement the distributed workflow man-
agement system. This system provides the typical function of a workflow manage-
ment system including user management, access control and work item distribution.
However, the system is divided into five separate active components which can be
individually replicated and distributed among a network of nodes running the active
component platform.

The five components are the access component, which acts as a gateway for ex-
ternal clients connecting to the system, an authentication component which provides
user and rights management which is used by the access component to regulate ac-
cess. An execution component handles the repository of workflow models and assists
in the enactment of workflow instances. The work item management receives and
assigns work items that are generated for human participants of the workflow and
finally the monitoring component which receives and agglomerates events that occur
during workflow execution.

The replication of these five components increases reliability by allowing for fall-
backs in case of sudden outages. The destributed nature of the system allows subunits
of departments to administer aspects of the system such as user management while
still participating in an overarching workflow management.

Finally, tools are available to access and interact with the system for a variety
of tasks. A standard workflow client is available for typical interactions of workflow
participants such as requesting and completing work items. The client also includes
an administration interface and a monitoring tool which can be used for such tasks
provided the user possess the correct privileges.

Validating and testing workflow models can be accomplished using the simulation
client, which automatically enacts workflow instances and then simulates the inter-
action of workflow participants according to pre-defined test cases. This can be used
by workflow designers to allow a reasonable level of assurance that the implemented
workflow model will perform as anticipated given particular scenarios.

216 Chapter 10. Application Scenario and Conclusion

10.1 Application and Deployment Scenario

The full system was tested on two separate occasions in a real world scenario based
on production preparation at Daimler AG. Production preparation is part of the
set of processes used to move a newly developed car series from prototype to full-
scale production ramp-up. This means that inital product development produced
a prototype and the production process of the new series has to be developed and
initiated.

Figure 10.2: Process map and phases in preparation for a series launch at Daimler
AG

Figure 10.2 shows the map of processes which are used to start the production of
a new car series. It is separated into two major steps: The first step is the series pro-
duction development and preparation in which the product as well as the production
process are developed and validated. This is followed by the series production launch
when the developed product and production process is slowly introduced until full
series production can commence.

The series production development and preparation involves two major groups of
processes, prototype assembly and production preparation. For testing the proposed
system, the production preparation process was chosen as an example of a typical
step in the preparation for a new series launch. Before the first production process is
enacted, the new product has been developed with all targetted features. In addition,
a first production process model is available.

10.1.1 Introduction to Production Preparation

The production preparation process is essentially a slowed-down test enactment and
performance of the production process. This means the whole prototype is assem-
bled using the current model of the proposed production process. While this test
assembly is being performed by a production mechanic, domain experts from dif-
ferent departments who are concerned with production aspects are present in order
to evaluate the production process itself as well as issues related to the production
process (see Figure 10.3).

10.1. Application and Deployment Scenario 217

Figure 10.3: During production preparation, domain experts from various depart-
ments gather to evaluate production issues

The domain experts in the process are concerned with a number of aspects regard-
ing the eventual production of the vehicle, which includes the following examples:

• Production process issues: This area involves the domain experts involved in
the design of the production process. During production preparation, these
experts evaluate whether the production process itself is correct and efficient.
One important question involves the order of the process steps and whether
they allow the assembly of the vehicle at all. For example, it is an error in the
production process if the mechanic is instructed to attach the wheels before
the axles are mounted. The production process experts are also interested
in opportunities to improve the process. For example, this can sometimes be
accomplished by reordering assembly steps: During assembly, the vehicle is
often raised, lowered and rotated on the assembly line. If two parts of the
vehicle need to be assembled while the vehicle is lowered, it is more efficient to
attach both parts to the vehicle while the vehicle is in a lowered state instead
of raising in between the two-part installation.

• Parts issues: This area involves the parts engineers who evaluate the parts that
were developed during the prototype stage and that are now used to assem-
ble the vehicle. Here, two main issues need to be evaluated: First, whether
assembly is possible at all and not blocked or otherwise impeded and second
whether the assembly is efficient. For example, parts can be attached to the
vehicle faster if they are snapped-on using plastic hooks or glued in place rather

218 Chapter 10. Application Scenario and Conclusion

than using bolts and screws. However, a bolted connection with the vehicle
is usually more durable, requiring the parts engineers to balance construction
efficiency vis-à-vis solid construction.

• Logistics issues: Logistics issues involve the question of how parts are made
available to the assembly line. Before assembly, parts are stored on special
shelves and carts which are wheeled to an assembly line station when and where
they are needed. The logistical issues addressed during production preparation
involve the shelves and carts required at particular stations and the exact
position of parts on both carts and shelves to minimize the time required by
mechanics to retrieve relevant parts.

• Ergonomic issues: A considerable amount of assembly steps are performed by a
mechanic who is working on a particular station on the assembly line. However,
the repetitive nature of the labor raises important health aspects that must be
taken into consideration. While mechanics are often rotated through different
stations to mitigate issues of repetitiveness and many stations involve multiple
steps, the mechanic still has to perform the same set of steps for many hours.
This means that the strain on the human body needs to be minimized, both
in order to meet legal requirements as well as avoiding mechanics developing
medical conditions resulting in an increased number of days absent from work.
For example, if mechanics are repetitiously forced to bend over to attach a
particular part because the vehicle is lowered at their station, ergonomic rules
require the assembly of the particular part to be moved to a different station
where this particular strain is not required.

The experts who deal with these issues originate from different departments within
the business. Nevertheless, for purposes of production preparation, they come to-
gether at a simulated assembly line in order to observe and evaluate the assembly
using the production process. This approach also allows for discussion between ex-
perts which allows them to resolve conflicts over specific aspects.

The production preparation process itself mainly concerns itself with document-
ing issues that need to be addressed. The issues themselves are recorded and ad-
dressed later within the individual departments. Each department has its own ap-
proach for resolving the issues found during production preparation assembly and
employ their own IT applications and database systems to record and process the
issues found.

Furthermore, due to the sensitive nature of new products and issues of industrial
espionage, network access at the assembly line is limited. This means that dur-
ing production preparation, identified issues are often recorded manually on white
boards, hand-written notes or office productivity software such as spreadsheet ap-
plications, which are then later used to transfer them into each department’s IT
systems.

Once the experts have been assembled for production preparation, the vehicle is
assembled according to the current version of the planned production process. In

10.1. Application and Deployment Scenario 219

addition to the domain experts, an experienced production mechanic is present to
perform the assembly steps. For each assembly step in the production process the
following basic actions are performed:

1. The assembly step instructions are presented visually using a projector and
read out loud to the group of expert and the mechanic. This includes detailed
instructions or visualizations if they are part of the assembly step in the pro-
duction process (missing but needed assembly instructions are considered to
be a production process issue that needs to be addressed).

2. The domain experts report already known issues that have not yet been ad-
dressed between production preparation iterations to everyone present.

3. The mechanic performs the assembly according to the step instructions while
the domain experts observe.

4. A production preparation report for the current assembly step is created based
on the discussion and recorded issues of the domain experts.

During each step everyone participating in the production preparation process is
allowed to interrupt and discuss issues they have noticed. This is not necessarily
restricted to people concerned with the particular area such as parts design: A
logistics expert can also bring a parts issue they have noticed to the attention of the
group.

Issues that have been identified and confirmed by the domain experts are recorded
manually by the same experts so they can be resolved internally at a later point. Most
of the time during production preparation those involved are standing or moving
around the prototype; however, if an issue needs to be recorded, the expert may
have to move away from the group to appropriately notate the issue. In addition,
parts issues are also often documented by taking a picture with a camera which
documents both the part and the vehicle in such a way that it demonstrates the
issue with that particular part.

10.1.2 Goal-oriented Implementation of Production Preparation in
GPMN

While the production preparation process has been in use for many decades, research
was initiated to improve the fairly ad-hoc approach of this particular process. Due
to the autonomy of the domain experts, the divergent IT systems in use and the
relatively free-wheeling nature employing the experience and discussion of the domain
experts to mitigate any potential production issues in advance, a high work load and
corresponding responsibility is placed on the organizer of the production process
called the production preparation manager.

By using the workflow system described in this work, an attempt was made to
improve the following areas of the process:

220 Chapter 10. Application Scenario and Conclusion

• Provide a structure for the production preparation process and reduce the pro-
duction preparation manager’s workload without impeding the free-wheeling
and creative nature of the process.

• Allow some integration of the IT systems so that issues get transferred to
each appropriate department and helping that department address the issues
without requiring the use of paper or other means of record that are foreign to
the process

• Employ mobile devices to allow domain experts to record issues while they
remain standing next to the vehicle in a digital format. Furthermore, allow the
use of the integrated camera to take pictures as required to document issues.

In order to reach these improvement goals, the plan for the test deployment for the
system included the following development steps:

1. Design and implement a workflow model with high enough flexibility so it can
be used as the workflow for performing a production preparation process.

2. Create a deployment plan for the workflow management system that takes the
reduced connectivity at the assembly line as well as the use of mobile devices
into account.

3. Implement a workflow client for mobile devices that can be used during the
production preparation process.

Steps one and two were achieved by using the system described in this work while the
special workflow client was implemented by an employee at Daimler Group Research.

The first step involves the design and implementation of the workflow model.
Since the production preparation process requires a high degree of security due to
the involvement of business secrets and also in order to reduce the complexity, the
process model shown in Figure 10.4 is a simplified GPMNmodel of the model used for
the test deployment, which, among other things, only addresses parts and production
process issues but is sufficient to explain the basic functionality of the workflow.

The main goal and root of the goal hierarchy is simply called ”Production Prepa-
ration” and represents the goal of achieving a successful production preparation after
performing a necessary number of iterations of the preparation assembly. The center
subgoal is named ”PP Assembly” and concerns itself with finishing the production
preparation assembly at the prototype assembly line the necessary number of iter-
ations and will only conclude as successful if the previous assembly iteration was
marked as the final iteration of production preparation. This goal is again divided
into two subgoals: One of those two goals is the ”Assembly Review” goal. This goal
includes an achieve condition that can only be met when all assembly steps of the
production process have been performed at the assembly line.

The goal is sequential and is connected with four subgoals which represent the
four steps which are done by the production preparation group for each part of
the production process: Report the current assembly step, report the known issues

10.1. Application and Deployment Scenario 221

F
ig
ur
e
10

.4
:
Ja

de
x
vi
rt
ua

ln
et
w
or
ks

an
d
de

vi
ce
s
in

th
e
pr
od

uc
ti
on

pr
ep

ar
at
io
n
de

pl
oy

m
en
t
sc
en
ar
io

(f
ro
m

[8
2]
)

222 Chapter 10. Application Scenario and Conclusion

with the step, perform the assembly on the vehicle prototype and finally generate
a production preparation report for this step. These goals each have a plan that
include the generation of a work item and other necessary actions.

Since the ”Assembly Review” goal is marked as sequential, each of the four steps
are performed in the defined order. However, once the final step has been performed
the goal does not terminate successfully due to its achieve condition and the retry flag
being set. Instead, the goal continuously activates the four subgoals in the specified
order until the all steps of the production process have been reviewed, which causes
the achieve condition to evaluate true.

While the ”Assembly Review” goal is active, the other subgoal of the ”PP Assem-
bly” goal is active as well. This goal is called ”Document Assembly Issues” and is
responsible for ensuring that issues found during the assembly are properly recorded.
Since there is the unlikely but possible scenario that no issue is found during assem-
bly, the goal is modeled as a perform goal instead of an achieve goal. It carries a
drop condition that also becomes true once the last production process step has been
performed.

The ”Document Assembly Issues” goals has another three subgoals for each of
the possible types of issues that can occur. The ”Document Parts Assembly Issues”
is used to record difficulties when attaching a part without assembly being com-
pletely impossible. For example, this includes excessive use of time or awkward work
positions that could be fixed by designing the part differently.

The subgoal ”Document Faulty Parts” is concerned with parts that are not only
difficult to attach to the vehicle but are flawed in such a way that assembly becomes
impossible. Finally, the ”Document Process Step Issues” subgoal concerns itself with
recording issues of the production process step itself such as step ordering.

Each of the three subgoals are perform goals with the retry flags set and each has
a single plan attached which generates a work item for recording the particular type
of issue. Since the subgoals are perform goals with a retry flag, they continuously
stay active and generate another work item whenever the previous one was used to
record an issue.

This approach allows the workflow participants to go through the assembly of
the vehicle step-by-step in a similar way as it was done previously in the manual
approach. The workflow deliberately does not moderate the free-wheeling interaction
between the participants and only provides a rough framework for the assembly.
While the assembly is being performed, work items for recording the various issues
are available due to the perform goal subtree. This allows workflow participants to
enter new issues at any time during the process and at different stages of a part
assembly.

Once all assembly steps of the production process have been performed, the
achieve condition of the ”Assembly Review” subgoal evaluates true. This causes
the whole subtree to terminate successfully. In addition, the drop condition of the
”Document Assembly Issues” subgoal causes this subtree to terminate as well which
causes the active work items for recording issues to be withdrawn. The termination

10.1. Application and Deployment Scenario 223

then concludes an iteration of the production preparation with the ”PP Assembly”
achieve goal capable of triggering additional iterations as deemed necessary by the
participants.

In addition to the ”PP Assembly” subgoal branch, the workflow model also in-
cludes two further subgoals. These two subgoals are used to address the issues found
during a production preparation assembly within the responsible departments. The
first subgoal is called ”Address Part Issues” which has a plan attached to redesign-
ing parts that have been flagged during assembly. The ”Address Assembly Step
Issues” subgoal however has a plan for redesigning the planned production workflow
to address process step issues.

Both goals are modeled as maintain goals with the maintain condition which aims
to maintain a state of zero known issues in their respective categories. This means
that whenever an issue is recorded during assembly, one of these two goals triggers
their plans to address the issue. The plan will be repeatedly activated until all the
issues have been cleared by the department.

The next section provides an overview of the workflow management system de-
ployment in which the workflow model was used and demostrates how the distributed
nature of the workflow management system supports the special circumstances of
production preparation such as involvement of multiple deplartments as well as the
isolated assembly line.

10.1.3 Workflow Management System Deployment

The production preparation process has a number of unusual circumstances related
to how the process is conducted as was described in section 10.1.1. Regarding the
deployment of a workflow management system on which the previously described
workflow model can be enacted, three requirements need to be satisfied in order to
address the circumstance of the process:

• The issues found during assembly are addressed by work groups within each
specialized department which tends to use their own IT systems.

• The assembly takes place at a mock assembly line with the workflow partici-
pants standing and moving around the vehicle using mobile devices.

• Due to business security and secrecy, network connectivity is limited, for ex-
ample, direct wireless access to the intranet is not possible.

In order to allow a smooth usage of the system during and in between assemblies,
these requirements had to be taken into account during system design and deploy-
ment for the workflow management system.

The requirements were met by leveraging a combination of two distinct features
of the workflow management system presented in this work. The first feature is the
distributed nature of the system as described in section 8.1, the second feature is the
separation of client and system networks in order to limit client access to the system
as shown in section 8.3.

224 Chapter 10. Application Scenario and Conclusion

F
igure

10.5:
Structure

of
the

deployed
w
orkflow

m
anagem

ent
system

using
Jadex

virtualnetw
orks

and
devices

in
the

production
preparation

deploym
ent

scenario
(based

on
[82])

10.1. Application and Deployment Scenario 225

The resulting system structure is show in Figure 10.5 in which the system com-
ponents were omitted for brevity. This virtual system network, which contains the
distributed and replicated components of the workflow management system, is sep-
arated into four different locations:

• A part of the system including workflow clients deployed in the part engineering
department

• The process engineering department includes another part with workflow
clients

• The main workflow management system components providing basic function-
ality in the IT department

• A mobile deployment used during assembly

The parts engineering department and the process engineering department each
maintain a subset of the total system network. Their part of the system network
primarily aims to allow the departments enhanced autonomy. For example, each
of the departments includes a node with an authentication component in order to
enable them to independently manage user accounts for their own employees. They
also include local work item management which allows the integration of local legacy
systems and a local access node for workflow clients.

The components in the departments’ system networks is integrated with the main
system network that has been installed permanently for the company as a whole.
Here, most of the remaining functionality, such as monitoring, which is not provided
by the departments is provided.

The final location for system network components is the mobile system network
used at the assembly line. This part of the system network is temporary and is set
up using mobile nodes whenever a production preparation assembly is in progress.
Its primary job is to provide a local workflow management infrastructure for the
mobile clients used during assembly and deal with the limited connectivity available
by employing the distribution and resilience features of the workflow management
system.

Workflow particpants can interact with the system from the client networks.
Client networks are available for each department, allowing the workflow partici-
pants to access the workflow management system and request work items using their
office workstations through the local department’s access component node. This
functionality is used during issue review, when the issues that have been identified
during assembly are resolved.

The second kind of client network is the mobile client network which is the coun-
terpart to the mobile system network. This client network is for the mobile devices
which are employed during production preparation assembly. It is also possible to
support multiple mobile client networks. This can again be useful for participants
coming with their department-configured mobile devices. In addition, it allows mul-

226 Chapter 10. Application Scenario and Conclusion

Figure 10.6: Tablet workflow client used during production preparation assembly,
information partially obscured for business secrecy

tiple production preparation assemblies (e.g. for different car models) to share a
mobile system network.

Standard laptops can be used to access the workflow management system. In
addition, researchers at Daimler also developed a special workflow client for mobile
tablets which is shown in Figure 10.6. Tablets are particularly useful during the
production preparation assembly since they can be carried on the person and taken
around and into the vehicle. Furthermore, the built-in camera can be used to doc-
ument parts issues when they are found with any photographs being automatically
included in the parts issue report. The picture can then be included in the parts engi-
neering database without the participant from parts engineering having to manually
upload it.

The system using the described deployment scenario and including the custom
tablet-based workflow client was evaluated on two separate occasions as part of an
ongoing production preparation for a new S-Class product line (see [82]). During
the evaluation, the system performed as expected including handling the limited
connectivity at the prototype assembly line.

While company procedures, company scheduling constraints and limited sample
size precluded a formal survey, a request for informal feedback by the paricipants was
issued. The feedback received was very positive regarding the system. In particular
it was noted that the system was non-invasive and did not interrupt the ”usual”
hands-on and dynamic approach taken by the participants. It was also noted that
the ability to take pictures which are automatically included as well as the integration
with different departmental IT systems was time-saving. As a result, the system was
made available to Daimler AG’s IT department for further development.

10.2. Conclusion and Future Work 227

10.2 Conclusion and Future Work

Chapter 1 of this work introduced long-running autonomous business processes and
noted considerable differences when compared to business processes such as tradi-
tional production processes which have been the primary target of business process
management. Chapter 2 showed how these types of processes are particularly affected
by typical business process management issues such as organizational structures.

In order to tackle the particular challenges of long-running autonomous business
processes, this work defined six research goals that needed to be addressed in order
to improve the viability of including such processes in business process and workflow
management systems:

• Increased workflow model agility is necessary to allow more autonomy for the
participants and enable the workflow to adapt to changing business situations
during the long execution time of the process.

• Due to the high degree of autonomy for participants and the workflow itself,
strategic-operational cohesion is required to ensure that all performed actions
align well with the business goals for the process.

• A balance of global control and local autonomy ensures that the workflow par-
ticipants gain the autonomy necessary for this type of processes while ensuring
that an appropriate amount of global control and coordination is maintained.

• Long execution times require enhancements for system robustness to ensure
successful execution of the workflow.

• Organizations do not always have ideal process-oriented structures and the ex-
isting structures may change over the course of a workflow execution, requiring
the system to support organizational agility allowing it to change with the
organization’s structure.

• Workflow instance agility would allow a workflow instance to be changed dur-
ing execution, allowing adaptation to unpredictable business changes. This
research goal was excluded from the scope of this work.

In order to address these research goals, each part of the BPM lifecycle consisting
of the analysis, design, implementation, execution and monitoring phases had to be
considered. For each of these phases, different solutions were proposed and imple-
mented that addressed the research goals based on the requirements of the particular
phase the solution addressed.

As a result, four main contributions have been developed as shown in Figure
10.7. Since long-running autonomous business processes tend to be only used un-
modified for a single enactment, they require additional assurance that the model
used is valid for the intended purpose. For modeling more flexible workflows that
support increased local autonomy while maintaining strategic-operational cohesion,

228 Chapter 10. Application Scenario and Conclusion

Figure 10.7: The different phases of the BPM lifecycle are affected by a different
set of the research goals for providing better support of long-running autonomous
processes. Solutions have been developed to address the research goals in all of the
affected phases.

a new goal-oriented workflow model language called Goal-oriented Business Modeling
Notation (GPMN) has been developed (see chapter4).

For modeling as well as implementation, editor tools for GPMN as well as BPMN
plans were developed which maintain the goal-oriented and flexible structure when
generating executable workflow models (see chapter 6) based on BDI (Belief, Desire,
Intention) software agents. For execution and monitoring, which is affected by most
of the research goals, a distributed workflow management system was developed (see
chapters 7 and 8). This system is capable of executing the goal-oriented workflow
models generated by the editor tools and utilizes a BDI-agent reasoning cycle to
provide flexible execution semantics. The distributed nature of the system also al-
lows for a high degree of local autonomy for the participants as well as providing
organizational agility by allowing organizational units to maintain different parts of
the system independently as well as introducing redundancy, allowing parts of the
system to be shut down and restarted if the organizational structure changes. The
redundancy also provides for additional system robustness in case of unanticipated
node failures. Finally, a simulation client has been developed which allows the work-
flow designer to simulate the execution of the workflow before it is deployed in the
real world (see chapter 9).

As a result, the approach presented in this work is capable of maintaining the fixed
research goals through the full BPM lifecycle and therefore enhance the support for
long-running autonomous business processes, which were not adequately addressed
previously by traditional business process management tools.

10.2. Conclusion and Future Work 229

Nevertheless, the system currently includes two major limitations which can be
the starting point for further enhancements: First, system robustness could be fur-
ther enhanced by persisting the process state. This could be accomplished through
a checkpointing approach which uses the already available distributed storage to
permanently store the process state.

The second issue is the currently unaddressed research goal of workflow instance
agility. This research goal concerns itself with changes in the business situation
that cannot be predicted in advance, preventing the workflow designer to include
them in a workflow model during design and implementation. This means that the
enacted workflow instance needs to be adapted while it is executing on the system. In
section 3.10, ADEPT2 was introduced which uses a runtime approach for modifying
the workflow instance during execution; however, the approach uses a task-based
approach.

An interesting avenue for adding workflow instance agility to goal-oriented models
may be offered by the plan-level of goal-oriented workflows: If a particular goal can
no longer be reached due to an unpredictable change in the business situation, the
user could be enabled by the system to add one or more additional plans to the goal
which are adapted to the changed situation and are capable of reaching the original
goal under the new circumstances.

A more complex approach would also allow the replacement of whole subhierar-
chies if the decomposition of business goals require change as well. This approach
would be more difficult since it has to take active goal instances into account and
deal with them appropriately, perhaps by dropping them deliberately or some other
rollover process supplied by the user.

In particular the plan addition would also enable non-technical users to make
modifications to workflow instances in a safe way if they are provided with a suffi-
ciently comprehensive plan library. This would provide an additional advantage over
the ADEPT2 approach for runtime adaption of workflow instances for non-technical
workflow partipants.

Overall, the developed system provides better support for collaborative and cre-
ative business processes that have a long execution time, requiring a large degree of
autonomy for the workflow participants as well as a high degree of runtime agility
and flexibility. This promotes an improved application of business process manage-
ment in areas that were previously difficult to accommodate and which were therefore
largely informally organized.

230 Chapter 10. Application Scenario and Conclusion

Publications

• [81] K. Jander and W. Lamersdorf. GPMN-Edit: High-level and Goal-oriented
Workflow Modeling. In WowKiVS 2011, volume 37, pages 146–157. Electronic
Communications of the EASST, 2011

• [82] K. Jander and W. Lamersdorf. Jadex WfMS: Distributed Workflow Man-
agement for Private Clouds. In Conference on Networked Systems (NetSys),
pages 84–91. IEEE Xplore, 2013

• [83] K. Jander and W. Lamersdorf. Compact and Efficient Agent Messaging.
In M. Dastani, J. F. Hübner, and B. Logan, editors, Programming Multi-Agent
Systems, volume 7837 of Lecture Notes in Computer Science, pages 108–122.
Springer Berlin Heidelberg, 2013. ISBN 978-3-642-38699-2

• [84] K. Jander and W. Lamersdorf. Distributed Event Processing for Goal-
oriented Workflows. In D. E Camacho, L. Braubach, S. Venticinque, and
C. Badica, editors, 8th International Symposium on Intelligent Distributed
Computing (IDC-2014), volume 570 of Intelligent Distributed Computing, pages
49–58. Springer Berlin, Heidelberg, 1 2015

• [85] K. Jander, L. Braubach, and A. Pokahr. EnvSupport: A Framework for
Developing Virtual Environments. In Seventh International Workshop From
Agent Theory to Agent Implementation (AT2AI-7), pages 471–476. Austrian
Society for Cybernetic Studies, 2010

• [86] K. Jander, L. Braubach, A. Pokahr, andW. Lamersdorf. Validation of Agile
Workflows using Simulation. In M. Dastani, A. E. F. Seghrouchni, J. Hübner,
and J. Leite, editors, Languages, Methodologies, and Development Tools for
Multi-Agent Systems, pages 39–55. Springer Berlin / Heidelberg, 8 2011

• [87] K. Jander, L. Braubach, A. Pokahr, W. Lamersdorf, and K.-J. Wack. Goal-
oriented Processes with GPMN. International Journal on Artificial Intelligence
Tools (IJAIT), 20(6):1021–1041, 12 2011

• [88] K. Jander, L. Braubach, and W. Lamersdorf. Distributed Monitoring and
Workflow Management for Goal-oriented Workflows. Journal of Concurrency
and Computation: Practice and Experience, pages 1324–1335, 2015. ISSN 1532-
0634

231

232 Chapter 10. Application Scenario and Conclusion

• [89] K. Jander, L. Braubach, and A. Pokahr. Extending the Communication
Capabilities of Agents. Journal of Computing and Informatics, 34:1001–1029,
2015

• [24] L. Braubach, A. Pokahr, K. Jander, W. Lamersdorf, and B. Burmeis-
ter. Go4Flex: Goal-Oriented Process Modelling. In Intelligent Distributed
Computing IV - Proceedings of the 4th International Symposium on Intelli-
gent Distributed Computing - IDC 2010, Tangier, Morocco, September 2010,
pages 77–87, 2010

• [25] L. Braubach, A. Pokahr, and K. Jander. JadexCloud - An Infrastruc-
ture for Enterprise Cloud Applications. In Multiagent System Technologies -
9th German Conference, MATES 2011, Berlin, Germany, October 6-7, 2011.
Proceedings, pages 3–15, 2011

• [26] L. Braubach, K. Jander, and A. Pokahr. A Practical Security Infrastructure
for Open Multi-Agent Systems. In M. Thimm M. Klusch, M. Paprzycki, editor,
Proceedings of Ninth German conference on Multi-Agent System TEchnologieS
(MATES-2013), pages 29–43. Springer, 2013

• [27] L. Braubach, K. Jander, and A. Pokahr. A Middleware for Managing Non-
Functional Requirements in Cloud PaaS. In International Conference on Cloud
and Autonomic Computing (ICCAC), pages 83–92. IEEE, 2014

• [28] L. Braubach, K. Jander, and A. Pokahr. High-Volume Data Streaming
with Agents. In Filip Zavoral, Jason J. Jung, and Costin Badica, editors,
Intelligent Distributed Computing VII, volume 511 of Studies in Computational
Intelligence, pages 199–209. Springer International Publishing, 2014. ISBN 978-
3-319-01570-5

• [131] A. Pokahr, L. Braubach, and K. Jander. Unifying Agent and Component
Concepts: Jadex Active Components. In Multiagent System Technologies, 8th
German Conference, MATES 2010, Leipzig, Germany, September 27-29, 2010.
Proceedings, pages 100–112, 2010

• [132] A. Pokahr, L. Braubach, and K. Jander. The Jadex Project: Program-
ming Model. In L. C. Jain and M. Ganzha, editors, Multiagent Systems and
Applications, pages 21–53. Springer Berlin/Heidelberg, 2012. ISBN 978-3-642-
33322-4

Bibliography

[1] Wil Van Der Aalst and Kees Van Hee. Workflow Management: Models, Meth-
ods, and Systems. MIT Press, Cambridge, MA, USA, 2002. ISBN 0-262-01189-
1.

[2] SAP AG. SAP Exchange Infrastructure (SAP XI). URL http://searchsap.
techtarget.com/definition/SAP-Exchange-Infrastructure. Last visited 2016-04-
26.

[3] G. Agha. Actors: A Model of Concurrent Computation in Distributed Systems.
MIT Press, Cambridge, MA, USA, 1986. ISBN 0-262-01092-5.

[4] Alfresco. Activiti BPM Platform. URL http://activiti.org/. Last visited 2016-
04-28.

[5] T. Ami and R. Sommer. Comparison and evaluation of business process mod-
elling and management tools. International Journal of Services and Standards,
3(2):249–261, 2007.

[6] A.S.M.E. Special committee on standardization of Therbligs, Process Charts,
and Their Symbols. A.S.M.E. standard operation and flow process charts,
1947.

[7] K. Beck, M. Beedle, A. van Bennekum, A. Cockburn, W. Cunningham,
M. Fowler, J. Grenning, J. Highsmith, A. Hunt, R. Jeffries, J. Kern, B. Marick,
R. C. Martin, S. Mellor, K. Schwaber, J. Sutherland, and D. Thomas. Mani-
festo for Agile Software Development, 2001. URL http://agilemanifesto.org/.
Last visited 2016-04-26.

[8] F. Bellifemine, F. Bergenti, G. Caire, and A. Poggi. JADE - A Java Agent
Development Framework. In R. Bordini, M. Dastani, J. Dix, and A. El Fallah
Seghrouchni, editors, Multi-Agent Programming: Languages, Platforms and
Applications, pages 125–147. Springer, 2005.

[9] F. Bellifemine, G. Caire, and D. Greenwood. Developing Multi-Agent systems
with JADE. John Wiley & Sons, 2007.

[10] T. Bellwood. UDDI Version 2.04 API Specification, jul 2002. URL http://www.
uddi.org/pubs/ProgrammersAPI-V2.04-Published-20020719.htm. Last visited
2016-04-27.

233

http://searchsap.techtarget.com/definition/SAP-Exchange-Infrastructure
http://searchsap.techtarget.com/definition/SAP-Exchange-Infrastructure
http://activiti.org/
http://agilemanifesto.org/
http://www.uddi.org/pubs/ProgrammersAPI-V2.04-Published-20020719.htm
http://www.uddi.org/pubs/ProgrammersAPI-V2.04-Published-20020719.htm

234 Bibliography

[11] BPMN Poster. Berliner BPM-Offensive (BPMB), 2.0 edition, 2011. URL
http://www.bpmb.de/index.php/BPMNPoster. Last visited 2016-04-26.

[12] E. Best and M. Koutny. Petri Net Semantics of Priority Systems. In Selected
Papers of the Second Workshop on Concurrency and Compositionality, pages
175–215, Essex, UK, 1992. Elsevier Science Publishers Ltd.

[13] H. H. Bi and J. L. Zhao. Applying Propositional Logic to Workflow Verification.
Information & Software Technology, 5:293–318, July 2004. ISSN 1385-951X.

[14] P. V. Biron, A. Malhotra, D. Peterson, S. Gao, C. M. Sperberg-McQueen, and
H. S. Thompson, editors. XML Schema Part 2: Datatypes. W3C Recom-
mendation. W3C, April 2012. URL http://www.w3.org/TR/xmlschema11-2/.
Last visited 2016-04-28.

[15] R. Bordini, Jomi F. Hübner, and R. Vieira. Jason and the Golden Fleece of
Agent-Oriented Programming. In R. Bordini, M. Dastani, J. Dix, and A. El
Fallah Seghrouchni, editors, Multi-Agent Programming: Languages, Platforms
and Applications, pages 3–37. Springer, 2005.

[16] R. H. Bordini and J. F. Hübner. BDI Agent Programming in AgentSpeak
Using Jason. In Proceedings of 6th International Workshop on Computational
Logic in Multi-Agent Systems (CLIMA VI). VOLUME 3900 OF LNCS, pages
143–164. Springer, 2005.

[17] M. Bratman. Intention, Plans, and Practical Reason. Harvard University
Press, 1987.

[18] L. Braubach. Architekturen und Methoden zur Entwicklung verteilter agen-
tenorientierter Softwaresysteme. Dissertation, Universität Hamburg, Fachbere-
ich Informatik, Vogt-Kölln-Str. 30, 22527 Hamburg, Germany, 1 2007.

[19] L. Braubach and A. Pokahr. Conceptual Integration of Agents with WSDL
and RESTful Web Services. In Programming Multi-Agent Systems - 10th In-
ternational Workshop, ProMAS 2012, Valencia, Spain, June 5, 2012, Revised
Selected Papers.

[20] L. Braubach and A. Pokahr. Representing Long-Term and Interest BDI Goals.
In Proc. of (ProMAS-7), pages 29–43. IFAAMAS Foundation, 5 2009.

[21] L. Braubach and A. Pokahr. Addressing Challenges of Distributed Systems
Using Active Components. In Intelligent Distributed Computing V - Proceed-
ings of the 5th International Symposium on Intelligent Distributed Computing
- IDC 2011, Delft, The Netherlands - October 2011, pages 141–151, 2011.

[22] L. Braubach, A. Pokahr, and W. Lamersdorf. Jadex: A BDI Agent Sys-
tem Combining Middleware and Reasoning. In R. Unland, M. Calisti, and
M. Klusch, editors, Software Agent-Based Applications, Platforms and Devel-
opment Kits, pages 143–168. Birkhäuser, 2005.

http://www.bpmb.de/index.php/BPMNPoster
http://www.w3.org/TR/xmlschema11-2/

Bibliography 235

[23] L. Braubach, A. Pokahr, D. Moldt, and W. Lamersdorf. Goal Representation
for BDI Agent Systems. In Proc. of (ProMAS 2004), pages 44–65. Springer,
2005.

[24] L. Braubach, A. Pokahr, K. Jander, W. Lamersdorf, and B. Burmeister.
Go4Flex: Goal-Oriented Process Modelling. In Intelligent Distributed Com-
puting IV - Proceedings of the 4th International Symposium on Intelligent Dis-
tributed Computing - IDC 2010, Tangier, Morocco, September 2010, pages 77–
87, 2010.

[25] L. Braubach, A. Pokahr, and K. Jander. JadexCloud - An Infrastructure for En-
terprise Cloud Applications. In Multiagent System Technologies - 9th German
Conference, MATES 2011, Berlin, Germany, October 6-7, 2011. Proceedings,
pages 3–15, 2011.

[26] L. Braubach, K. Jander, and A. Pokahr. A Practical Security Infrastructure for
Open Multi-Agent Systems. In M. Thimm M. Klusch, M. Paprzycki, editor,
Proceedings of Ninth German conference on Multi-Agent System TEchnologieS
(MATES-2013), pages 29–43. Springer, 2013.

[27] L. Braubach, K. Jander, and A. Pokahr. A Middleware for Managing Non-
Functional Requirements in Cloud PaaS. In International Conference on Cloud
and Autonomic Computing (ICCAC), pages 83–92. IEEE, 2014.

[28] L. Braubach, K. Jander, and A. Pokahr. High-Volume Data Streaming with
Agents. In Filip Zavoral, Jason J. Jung, and Costin Badica, editors, Intel-
ligent Distributed Computing VII, volume 511 of Studies in Computational
Intelligence, pages 199–209. Springer International Publishing, 2014. ISBN
978-3-319-01570-5.

[29] H.-J. Bullinger, G. Wiedmann, and J. Niemeier. Business reengineering: ak-
tuelle Managementkonzepte in Deutschland: Zukunftsperspektiven und Stand
der Umsetzung. IRB-Verlag, 1995.

[30] B. Burmeister, M. Arnold, F. Copaciu, and G. Rimassa. BDI-agents for agile
goal-oriented business processes. In AAMAS ’08, pages 37–44. IFAAMAS,
2008.

[31] M. Calisti and D. Greenwood. Goal-Oriented Autonomic Process Modeling
and Execution for Next Generation Networks. In Proc. of MACE ’08, pages
38–49, Berlin, Heidelberg, 2008. Springer. ISBN 978-3-540-87354-9. doi: http:
//dx.doi.org/10.1007/978-3-540-87355-6_4.

[32] C. Castelfranchi. Guarantees for Autonomy in Cognitive Agent Architecture.
In Proceedings of the Workshop on Agent Theories, Architectures, and Lan-
guages on Intelligent Agents, ECAI-94, pages 56–70, New York, NY, USA,
1995. Springer-Verlag New York, Inc. ISBN 3-540-58855-8.

236 Bibliography

[33] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows,
T. Chandra, A. Fikes, and R. E. Gruber. Bigtable: A Distributed Storage
System for Structured Data. ACM Trans. Comput. Syst, 26(2):4:1–4:26, 2008.
ISSN 0734-2071.

[34] J. Clark and M. Murata, editors. RELAX NG Specification. Committee Speci-
fication. OASIS, December 2001. URL http://relaxng.org/spec-20011203.html.
Last visited 2016-04-28.

[35] T. H. Davenport and J. E. Short. The New Industrial Engineering: Information
Technology and Business Process Redesign. Sloan Management Review, 31(4):
11–27, 1990.

[36] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels. Dynamo: ama-
zon’s highly available key-value store. SIGOPS Oper. Syst. Rev, 41(6):205–220,
2007. ISSN 0163-5980.

[37] F. Demuth. Verteilter Speicherdienst für Nutzer-integrierende dynamische
Cloud-Umgebungen. Diplomarbeit, Distributed Systems and Information Sys-
tems Group, Computer Science Department, University of Hamburg, Novem-
ber 2014. (in German).

[38] F. DeRemer and H.H. Kron. Programming-in-the-Large Versus Programming-
in-the-Small. IEEE Transactions on Software Engineering, 2(2):80–86, 1976.
ISSN 0098-5589.

[39] L. P. Deutsch. DEFLATE Compressed Data Format Specification version 1.3.
RFC 1951, 5 1996. URL http://www.ietf.org/rfc/rfc1951.txt. Last visited
2016-04-28.

[40] Merriam-Webster Online Dictionary. Autonomy, 2014. URL http://www.
merriam-webster.com/dictionary/autonomy. Last visited 2016-04-28.

[41] M. Earl and B. Kahn. How new is business process redesign? European
Management Journal, 12(1):20–30, 3 1994.

[42] T. Erl. Service-Oriented Architecture: A Field Guide to Integrating XML and
Web Services. Prentice Hall PTR, Upper Saddle River, NJ, USA, 2004. ISBN
0131428985.

[43] T. Erl. Service-Oriented Architecture: Concepts, Technology, and Design.
Prentice Hall PTR, Upper Saddle River, NJ, USA, 2005. ISBN 0131858580.

[44] T. Erl, B. Carlyle, C. Pautasso, and R. Balasubramanian. SOA with REST
- Principles, Patterns and Constraints for Building Enterprise Solutions with
REST. The Prentice Hall service technology series. Prentice Hall, 2013. ISBN
978-0-13-701251-0.

http://relaxng.org/spec-20011203.html
http://www.ietf.org/rfc/rfc1951.txt
http://www.merriam-webster.com/dictionary/autonomy
http://www.merriam-webster.com/dictionary/autonomy

Bibliography 237

[45] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and
T. Berners-Lee. Hypertext Transfer Protocol – HTTP/1.1. RFC 2616, jun
1999. URL http://www.ietf.org/rfc/rfc2616.txt. Last visited 2016-04-28.

[46] C. Forgy. Rete: A Fast Algorithm for the Many Patterns/Many Objects Match
Problem.

[47] Charles Lanny Forgy. On the Efficient Implementation of Production Systems.
PhD thesis, Carnegie Mellon University, Pittsburgh, PA, USA, 1979.

[48] H. Foster, S. Uchitel, J. Magee, and J. Kramer. Model-based verification of
web service compositions. In 18th IEEE international conference on automated
software engineering, Montreal, Canada, 2003, 2003. ISBN 0-7695-2035-9.

[49] Apache Foundation. Apache ODE (Orchestration Director Engine). URL
http://ode.apache.org/. Last visited 2016-04-26.

[50] Apache Foundation. Apache Derby, 2014. URL https://db.apache.org/derby/.
Last visited 2016-04-26.

[51] Eclipse Foundation. Eclipse BPMN Modeler. http://www.eclipse.org/bpmn/,
Last visited 2016-04-26, archived project, 2009.

[52] Eclipse Foundation. BPMN2 Modeler. http://eclipse.org/bpmn2-modeler/,
Last visited 2016-04-26, 2014.

[53] FIPA. FIPA SL Content Language Specification. Foundation for Intelligent
Physical Agents (FIPA), December 2002. URL http://www.fipa.org. Last
visited 2016-04-26.

[54] S. Franklin and A. C. Graesser. Is it an Agent, or Just a Program?: A Taxon-
omy for Autonomous Agents". In J. Müller, M. Wooldridge, and N. Jennings,
editors, Proceedings of the 3rd Workshop on Intelligent Agents III, Agent Theo-
ries, Architectures, and Languages (ATAL 1996)", pages 21–35. Springer, 1997.

[55] J. R. Galbraith. Designing Matrix Organizations that Actually Work: How
IBM, Procter & Gamble and Others Design for Success. Jossey-Bass, 2008.
ISBN 9780470316313.

[56] M. R. Genesereth and S. P. Ketchpel. Software Agents. Commun. ACM, 37
(7):48–ff., July 1994. ISSN 0001-0782.

[57] S. Gilbert and N. Lynch. Brewer’s Conjecture and the Feasibility of Consistent,
Available, Partition-tolerant Web Services. SIGACT News, 33(2):51–59, June
2002. ISSN 0163-5700.

[58] F.B. Gilbreth and L.M. Gilbreth. Process Charts. American Society of Me-
chanical Engineers, 1921.

http://www.ietf.org/rfc/rfc2616.txt
http://ode.apache.org/
https://db.apache.org/derby/
http://www.eclipse.org/bpmn/
http://eclipse.org/bpmn2-modeler/
http://www.fipa.org

238 Bibliography

[59] C. Girault and R. Valk. Petri Nets for System Engineering: A Guide to Model-
ing, Verification, and Applications. Springer-Verlag New York, Inc., Secaucus,
NJ, USA, 2001. ISBN 3540412174.

[60] A. Goh, Y.-K. Koh, and D. S. Domazet. ECA rule-based support for workflows.
AI in Engineering, 15(1):37–46, 2001.

[61] C. F. Goldfarb. The SGML Handbook. Oxford University Press, Inc., New
York, NY, USA, 1990. ISBN 0-10-853737-9.

[62] J. Gosling, B. Joy, G. Steele, G. Bracha, and A. Buckley. The Java Language
Specification Third Second Edition. Oracle Inc., 2014. URL http://docs.oracle.
com/javase/specs/jls/se8/html/. Last visited 2016-04-27.

[63] M. Gudgin, M. Hadley, N. Mendelsohn, J.-J. Moreau, H. F. Nielsen, A. Kar-
markar, and Y. Lafon. SOAP Version 1.2 Part 1: Messaging Framework (Sec-
ond Edition), apr 2007. URL http://www.w3.org/TR/soap12/. Last visited
2016-04-28.

[64] W. Sesselmann H. J. Schmelzer. Geschäftsprozessmanagement in der Praxis.
Hanser Fachbuchverlag, 2008.

[65] B. Hayes-Roth. An Architecture for Adaptive Intelligent Systems. Artificial
Intelligence, 72(1–2):329–365, 1995.

[66] H. H. Hinterhuber, G. Handlbauer, and K. Matzler. Kundenzufriedenheit durch
Kernkompetenzen: eigene Potentiale erkennen, entwickeln, umsetzen. Hanser
Fachbuchverlag, 1997.

[67] W. Hoffmann, J. Kirsch, and A.-W. Scheer. Modellierung mit Ereignisges-
teuerten Prozeßketten: Methodenhandbuch. Veröffentlichungen des Instituts
für Wirtschaftsinformatik, 101, 1992.

[68] D. Hollingsworth. Workflow Management System Reference Model, 1995. URL
http://www.wfmc.org/. Last visited 2016-04-27.

[69] J. R. Holmevik. Compiling Simula: A historical study of technological genesis.
IEEE Annals in the History of Computing, 16(4):25–37, 12 1994.

[70] C. Homburg and B. Rudolph. Wie zufrieden sind Ihre Kunden tatsächlich?
Harvard Business Manager, 1995.

[71] N. Howden, R. Rönnquist, A. Hodgson, and A. Lucas. JACK Intelligent Agents
- Summary of an Agent Infrastructure. In Proceedings of the 5th ACM Inter-
national Conference on Autonomous Agents (AGENTS 2001), 2001.

[72] M. Imai. Gemba Kaizen: A Commonsense Approach to a Continuous Improve-
ment Strategy. McGraw-Hill, 2012. ISBN 9780071790352.

http://docs.oracle.com/javase/specs/jls/se8/html/
http://docs.oracle.com/javase/specs/jls/se8/html/
http://www.w3.org/TR/soap12/
http://www.wfmc.org/

Bibliography 239

[73] IBM Inc. WebSphere Process Server, . URL http://www-01.ibm.com/
software/integration/wps/. Last visited 2016-04-28.

[74] Microsoft Inc. Microsoft BizTalk, . URL http://www.microsoft.com/en-us/
server-cloud/products/biztalk/. Last visited 2016-04-28.

[75] Oracle Inc. Oracle BPEL Process Manager Data Sheet, 2009. URL
http://www.oracle.com/us/products/middleware/application-server/
bpel-process-manager-ds-066554.pdf. Last visited 2016-04-26.

[76] Oracle Inc. Java Remote Method Invocation, 2010. URL http://docs.oracle.
com/javase/7/docs/platform/rmi/spec/rmiTOC.html. Last visited 2016-04-
28.

[77] Oracle Inc. MySQL 5.7 Reference Manual Replication. Redwood Shores, CA,
USA, 2014. URL http://dev.mysql.com/doc/refman/5.7/en/replication.html.
Last visited 2016-04-27.

[78] D. Ings, L. Clément, D. König, V. Mehta, R. Mueller, R. Rangaswamy,
M. Rowley, and I. Trickovic. WS-BPEL Extension for People (BPEL4People)
Specification Version 1.1. OASIS Committee Specification, August 2010.
URL http://docs.oasis-open.org/bpel4people/bpel4people-1.1.html. Last vis-
ited 2016-04-27.

[79] D. Ings, L. Clément, D. König, V. Mehta, R. Mueller, R. Rangaswamy,
M. Rowley, and I. Trickovic. Web Services Human Task (WS-HumanTask)
Specification Version 1.1. OASIS Committee Specification Draft 12 / Public
Review Draft 05., July 2012. URL http://docs.oasis-open.org/bpel4people/
ws-humantask-1.1.html. Last visited 2016-04-27.

[80] K. Jander. Validating Agile Business Processes with Simulation-based Testing.
Master’s thesis, University of Hamburg, 2009.

[81] K. Jander and W. Lamersdorf. GPMN-Edit: High-level and Goal-oriented
Workflow Modeling. In WowKiVS 2011, volume 37, pages 146–157. Electronic
Communications of the EASST, 2011.

[82] K. Jander and W. Lamersdorf. Jadex WfMS: Distributed Workflow Manage-
ment for Private Clouds. In Conference on Networked Systems (NetSys), pages
84–91. IEEE Xplore, 2013.

[83] K. Jander and W. Lamersdorf. Compact and Efficient Agent Messaging. In
M. Dastani, J. F. Hübner, and B. Logan, editors, Programming Multi-Agent
Systems, volume 7837 of Lecture Notes in Computer Science, pages 108–122.
Springer Berlin Heidelberg, 2013. ISBN 978-3-642-38699-2.

[84] K. Jander and W. Lamersdorf. Distributed Event Processing for Goal-oriented
Workflows. In D. E Camacho, L. Braubach, S. Venticinque, and C. Badica, edi-

http://www-01.ibm.com/software/integration/wps/
http://www-01.ibm.com/software/integration/wps/
http://www.microsoft.com/en-us/server-cloud/products/biztalk/
http://www.microsoft.com/en-us/server-cloud/products/biztalk/
http://www.oracle.com/us/products/middleware/application-server/bpel-process-manager-ds-066554.pdf
http://www.oracle.com/us/products/middleware/application-server/bpel-process-manager-ds-066554.pdf
http://docs.oracle.com/javase/7/docs/platform/rmi/spec/rmiTOC.html
http://docs.oracle.com/javase/7/docs/platform/rmi/spec/rmiTOC.html
http://dev.mysql.com/doc/refman/5.7/en/replication.html
http://docs.oasis-open.org/bpel4people/bpel4people-1.1.html
http://docs.oasis-open.org/bpel4people/ws-humantask-1.1.html
http://docs.oasis-open.org/bpel4people/ws-humantask-1.1.html

240 Bibliography

tors, 8th International Symposium on Intelligent Distributed Computing (IDC-
2014), volume 570 of Intelligent Distributed Computing, pages 49–58. Springer
Berlin, Heidelberg, 1 2015.

[85] K. Jander, L. Braubach, and A. Pokahr. EnvSupport: A Framework for Devel-
oping Virtual Environments. In Seventh International Workshop From Agent
Theory to Agent Implementation (AT2AI-7), pages 471–476. Austrian Society
for Cybernetic Studies, 2010.

[86] K. Jander, L. Braubach, A. Pokahr, and W. Lamersdorf. Validation of Agile
Workflows using Simulation. In M. Dastani, A. E. F. Seghrouchni, J. Hübner,
and J. Leite, editors, Languages, Methodologies, and Development Tools for
Multi-Agent Systems, pages 39–55. Springer Berlin / Heidelberg, 8 2011.

[87] K. Jander, L. Braubach, A. Pokahr, W. Lamersdorf, and K.-J. Wack. Goal-
oriented Processes with GPMN. International Journal on Artificial Intelligence
Tools (IJAIT), 20(6):1021–1041, 12 2011.

[88] K. Jander, L. Braubach, and W. Lamersdorf. Distributed Monitoring and
Workflow Management for Goal-oriented Workflows. Journal of Concurrency
and Computation: Practice and Experience, pages 1324–1335, 2015. ISSN
1532-0634.

[89] K. Jander, L. Braubach, and A. Pokahr. Extending the Communication Ca-
pabilities of Agents. Journal of Computing and Informatics, 34:1001–1029,
2015.

[90] JBoss. jBPM Business Process Management Suite. URL http://www.jbpm.
org/. Last visited 2016-04-27.

[91] N. R. Jennings and M. J. Wooldridge. Agent Technology Foundations, Applica-
tions, and Markets. Springer Verlag, Springer Berlin / Heidelberg, 1998. ISBN
3540635912.

[92] K. Jensen and L. M. Kristensen. Coloured Petri Nets. Springer Verlag, Springer
Berlin / Heidelberg, 2009. ISBN 9783642425813.

[93] R. S. Kaplan and D. P. Norton. The Balanced Scorecard: Translating Strategy
into Action. Harvard Business Review Press, 1996. ISBN 9780875846514.

[94] R. S. Kaplan and D. P. Norton. Using the Balanced Scorecard as a Strategic
Management System. Harvard Business Review, (January-February):75–85,
1996.

[95] G. Keller, M. Nuttigens, and A.-W. Scheer. Semantische Prozessmodellierung
auf der Grundlage: Ereignisgesteuerter Prozessketten (EPK). Veröffentlichun-
gen des Instituts für Wirtschaftsinformatik, 89, 1992.

http://www.jbpm.org/
http://www.jbpm.org/

Bibliography 241

[96] F. Klügl. Multiagentensimulation - Konzepte, Werkzeuge, Anwendung. Addison
Wesley, 2001.

[97] D. Krafzig, K. Banke, and D. Slama. Enterprise SOA: Service-Oriented Archi-
tecture Best Practices (The Coad Series). Prentice Hall PTR, Upper Saddle
River, NJ, USA, 2004. ISBN 0131465759.

[98] Olaf Kummer. Referenznetze. Logos Verlag, 2002.

[99] F. Leymann. Web Services Flow Language (WSFL 1.0). Technical report,
IBM, May 2001.

[100] F. Leymann and D. Roller. Production workflow concepts and techniques. Pren-
tice Hall PTR, 2000. ISBN 0130217530.

[101] X. Li. What’s So Bad About Rule-Based Programming? IEEE Software, 8(5):
103–105, 1991.

[102] Y. Lin. Semantic Annotation of Process Models: Facilitating Process Knowl-
edge Management. PhD thesis, Norwegian University of Science and Technol-
ogy, 2008.

[103] JGraph Ltd. JGraphX Diagram Framework. URL http://www.jgraph.com/.
Last visited 2016-04-28.

[104] M. Luck, P. McBurney, O. Shehory, and S. Willmott. Agent Technology: Com-
puting as Interaction (A Roadmap for Agent Based Computing). AgentLink,
2005.

[105] P. Maes. Agents that Reduce Work and Information Overload. Communica-
tions of the ACM, 37(7):30–40, 1994.

[106] P. Maes. Artificial Life Meets Entertainment: Lifelike Autonomous Agents.
Communications of the ACM, 38(11):108–114, 1995.

[107] M. Maloney, D. Beech, N. Mendelsohn, S. Gao, C. M. Sperberg-McQueen, and
H. S. Thompson, editors. XML Schema Part 1: Structures. W3C Recommen-
dation. W3C, apr 2012. URL http://www.w3.org/TR/xmlschema11-1/. Last
visited 2016-04-26.

[108] J. Marino and M. Rowley. Understanding SCA (Service Component Archi-
tecture). Addison-Wesley Professional, 1st edition, 2009. ISBN 0321515080,
9780321515087.

[109] J. Martin and J. J. Odell. Object-Oriented Methods. Prentice Hall PTR, Upper
Saddle River, NJ, USA, 1st edition, 1994. ISBN 0136308562.

[110] P. Massuthe, W. Reisig, and K. Schmidt. An Operating Guideline Approach
to the SOA. Annals of Mathematics Computing and Teleinformatics, 1:35–43,
2005.

http://www.jgraph.com/
http://www.w3.org/TR/xmlschema11-1/

242 Bibliography

[111] B. M. McCarthy and R. Stauffer. Six Sigma: Enhancing Six Sigma Through
Simulation with iGrafx Process for Six Sigma. In Proceedings of the 33Nd
Conference on Winter Simulation, WSC ’01, pages 1241–1247, Washington,
DC, USA, 2001. IEEE Computer Society. ISBN 0-7803-7309-X.

[112] D. McCarthy and U. Dayal. The Architecture of an Active Database Manage-
ment System. SIGMOD Rec., 18(2):215–224, June 1989. ISSN 0163-5808.

[113] J. Meng, S. Y. W. Su, H. Lam, A. Helal, J. Xian, X. Liu, and S. Yang. Dy-
naFlow: a dynamic inter-organisational workflow management system. In Int.
Journal of Business Process Integration and Management (IJBPIM), volume 1,
pages 101–115. Inderscience Enterprises Ltd., 2005.

[114] A. Miguel. WS-BPEL 2.0 Tutorial. http://eclipse.org/tptp/platform/
documents/design/choreography_html/tutorials/wsbpel_tut.html, Oct 2005.

[115] J. P. Müller. The Design of Intelligent Agents - A Layered Approach. Springer,
1996.

[116] R. Müller and E. Rahm. Rule-Based Dynamic Modification of Workflows in
a Medical Domain. In Alejandro P. Buchmann, editor, Datenbanksysteme in
Büro, Technik und Wissenschaft (BTW), GI-Fachtagung, Freiburg, 1.-3. März
1999, Proceedings. Informatik Aktuell, pages 429–448. Springer, 1999.

[117] I. Nunes, C. J. P. De Lucena, and M. Luck. BDI4JADE: a BDI layer on top
of JADE, 2011.

[118] WSBPEL 2.0. Web Services Business Process Execution Language (WSPBEL)
Specification. OASIS, version 2.0 edition, 2007.

[119] OMG. The Common Object Request Broker: Architecture and Specification.
Object Management Group (OMG), revision 1.1 edition, December 1991.

[120] BPMN 1.1. Business Process Modeling Notation (BPMN) Specification. Object
Management Group (OMG), version 1.1 edition, February 2008. URL http://
www.bpmn.org/Documents/BPMN_1-1_Specification.pdf. Last visited 2016-
04-26.

[121] BPMN 2.0. Business Process Modeling Notation (BPMN) Specification. Object
Management Group (OMG), version 2.0 edition, January 2011. URL http:
//www.omg.org/spec/BPMN/2.0/. Last visited 2016-04-28.

[122] CMMN 1.0. Case Management Model and Notation (CMMN). Object Man-
agement Group (OMG), version 1.0 edition, May 2014. URL http://www.omg.
org/spec/CMMN/1.0/. Last visited 2016-04-27.

[123] M. Osterloh and J. Frost. Prozessmanagement als Kernkompetenz: Wie Sie
Business Reengineering strategisch nutzen können. Gabler Verlag, 2006. ISBN
9783834902320.

http://eclipse.org/tptp/platform/documents/design/choreography_html/tutorials/wsbpel_tut.html
http://eclipse.org/tptp/platform/documents/design/choreography_html/tutorials/wsbpel_tut.html
http://www.bpmn.org/Documents/BPMN_1-1_Specification.pdf
http://www.bpmn.org/Documents/BPMN_1-1_Specification.pdf
http://www.omg.org/spec/BPMN/2.0/
http://www.omg.org/spec/BPMN/2.0/
http://www.omg.org/spec/CMMN/1.0/
http://www.omg.org/spec/CMMN/1.0/

Bibliography 243

[124] C. Ouyang, M. Dumas, A. ter Hofstede, and W. van der Aalst. From BPMN
Process Models to BPEL Web Services. In Proc. of ICWS ’06, pages 285–292.
IEEE, 2006. ISBN 0-7695-2669-1. doi: http://dx.doi.org/10.1109/ICWS.2006.
67.

[125] P.Alpar, R. Alt, F. Bensberg, H. L. Grob, P. Weimann, and R. Winter, editors.
Anwendungsorientierte Wirtschaftsinformatik: Strategische Planung, Entwick-
lung und Nutzung von Informationssystemen. Springer Vieweg, Wiesbaden,
2014. ISBN 978-3-658-00520-7.

[126] E. Pierce. A simple flowchart for troubleshooting a broken lamp. http://en.
wikipedia.org/wiki/File:LampFlowchart.svg, May 2006.

[127] A. Pokahr and L. Braubach. From a Research to an Industrial-Strength Agent
Platform: Jadex V2. In Hans-Georg Fill Hans Robert Hansen, Dimitris Kara-
giannis, editor, Business Services: Konzepte, Technologien, Anwendungen - 9.
Internationale Tagung Wirtschaftsinformatik (WI 2009), pages 769–778. Öster-
reichische Computer Gesellschaft, 2 2009.

[128] A. Pokahr and L. Braubach. The Active Components Approach for Distributed
Systems Development. International Journal of Parallel, Emergent and Dis-
tributed Systems, 28(4):321–369, 2013.

[129] A. Pokahr, L. Braubach, and W. Lamersdorf. A Goal Deliberation Strategy for
BDI Agent Systems. In T. Eymann, F. Klügl, W. Lamersdorf, M. Klusch, and
M. Huhns, editors, Proceedings of the 3rd German conference on Multi-Agent
System TEchnologieS (MATES-2005). Springer, 2005.

[130] A. Pokahr, L. Braubach, and W. Lamersdorf. Jadex: A BDI Reasoning Engine.
In R. Bordini, M. Dastani, J. Dix, and A. El Fallah Seghrouchni, editors, Multi-
Agent Programming: Languages, Platforms and Applications, pages 149–174.
Springer, 2005.

[131] A. Pokahr, L. Braubach, and K. Jander. Unifying Agent and Component
Concepts: Jadex Active Components. In Multiagent System Technologies, 8th
German Conference, MATES 2010, Leipzig, Germany, September 27-29, 2010.
Proceedings, pages 100–112, 2010.

[132] A. Pokahr, L. Braubach, and K. Jander. The Jadex Project: Programming
Model. In L. C. Jain and M. Ganzha, editors, Multiagent Systems and Applica-
tions, pages 21–53. Springer Berlin/Heidelberg, 2012. ISBN 978-3-642-33322-4.

[133] Alexander Pokahr. Programmiersprachen und Werkzeuge zur Entwicklung
verteilter agentenorientierter Softwaresysteme. Dissertation, Universität Ham-
burg, Fachbereich Informatik, Vogt-Kölln-Str. 30, 22527 Hamburg, Germany,
1 2007.

http://en.wikipedia.org/wiki/File:LampFlowchart.svg
http://en.wikipedia.org/wiki/File:LampFlowchart.svg

244 Bibliography

[134] M. E. Porter. Competitive advantage: Creating and sustaining superior perfor-
mance. Free Press, New York and London, 1985. ISBN 9780029250907.

[135] G. Probst and B. Büchel. Organisationales Lernen: Wettbewerbsvorteil der
Zukunft. Dr. Th. Gabler Verlag, 1994. ISBN 9783409230247.

[136] M. Reichert and P. Dadam. Enabling Adaptive Process-aware Information
Systems with ADEPT2. In Jorge Cardoso and Wil van der Aalst, editors,
Handbook of Research on Business Process Modeling, pages 173–203. Informa-
tion Science Reference, Hershey, New York, March 2009.

[137] W. Reisig. Petri Nets: An Introduction. Springer-Verlag New York, Inc., New
York, NY, USA, 1985. ISBN 0-387-13723-8.

[138] S. Russell and P. Norvig. Artifical Intelligence: A Modern Approach. Prentice-
Hall, 2003.

[139] W. Sadiq and M. E. Orlowska. Analyzing process models using graph reduction
techniques. Information Systems, 25(2):117 – 134, 2000. ISSN 0306-4379. The
11th International Conference on Advanced Information System Engineering.

[140] A.-W. Scheer and M. Nüttgens. ARIS Architecture and Reference Models
for Business Process Management. In Business Process Management, Models,
Techniques, and Empirical Studies. Springer, 2000.

[141] A.-W. Scheer, O. Thomas, and O. Adam. Process Modeling Using Event-
Driven Process Chains. In Process-Aware Information Systems. Wiley, 2005.
ISBN 978-0-471-66306-5.

[142] C. Schroth and T. Janner. Web 2.0 and SOA: Converging Concepts Enabling
the Internet of Services. IT Professional, 9(3):36–41, 2007. ISSN 1520-9202.

[143] G. Schuh, T. Friedli, and M. A. Kurr. Prozessorientierte Reorganisation:
Reengineering-Projekte professionell gestalten und umsetzen. Hanser Fach-
buchverlag, 2006. ISBN 9783446407206.

[144] N. Seel. Agent Theories and Architectures. PhD thesis, Surrey University,
Guildford, UK, 1989.

[145] Y. Shoham. Agent-oriented programming. Artificial Intelligence, 60(1):51–92,
1993.

[146] P. C Sander T. P.J Berden, A. C Brombacher. The building bricks of product
quality: An overview of some basic concepts and principles. International
Journal of Production Economics, 67(1):3–15, 8 2000.

[147] S. Thatte. XLANG - Web Services for Business Process Design. Technical
report, Microsoft, 2001.

[148] The Unicode Consortium. The Unicode Standard. Addison Wesley, 2006.

Bibliography 245

[149] Roger Tregear. Business Process Standardization. In J. vom Brocke and
M. Rosemann, editors, Handbook on Business Process Management 2, Inter-
national Handbooks on Information Systems, pages 307–327. Springer Berlin
Heidelberg, 2010. ISBN 978-3-642-01981-4.

[150] D. Vahs. Organisation: Einführung in die Organisationstheorie und -praxis.
Schäffer-Poeschel, 2005. ISBN 9783791023571.

[151] R. Valk. Modelling of task flow in systems of functional units. 124 FBI-HH-
B-124/87, "University of Hamburg", Hamburg, Germany, 1987.

[152] W. van der Aalst. The Application of Petri Nets to Workflow Management.
Journal of Circuits, Systems and Computers, 8(1):21–66, Feb 1998.

[153] W. van der Aalst, D. Moldt, R. Valk, and F. Wienberg. Enacting interorganiza-
tional workflows using nets in nets. In Jörg Becker, Michael zur Mühlen, and
Michael Rosemann, editors, Proceedings of the 1999 Workflow Management
Conference Workflow-based Applications, Münster, Nov. 9th 1999, Working
Paper Series of the Department of Information Systems, pages 117–136, Uni-
versity of Münster, Department of Information Systems, Steinfurter Str. 109,
48149 Münster, 1999. Working Paper No. 70.

[154] W. M. P. van der Aalst and A. H. M. ter Hofstede. YAWL: yet another workflow
language. Information Systems, 30(4):245–275, June 2005.

[155] W. M. P. van der Aalst, A. H. M. ter Hofstede, and M. Weske. Business Process
Management: A Survey. In Proceedings of the 2003 International Conference
on Business Process Management, BPM’03, pages 1–12, Berlin, Heidelberg,
2003. Springer-Verlag. ISBN 3-540-40318-3.

[156] W. M. P. van der Aalst, A. H. M. ter Hofstede, and M. Weske. Business Process
Management: A Survey. In Business Process Management, pages 1–12, 2003.

[157] MG van’t Veer. Management of improvements. International Journal of Project
Management, 9(2):82–85, 5 1991.

[158] K. Vergidis, A. Tiwari, and B. Majeed. Business Process Analysis and Opti-
mization: Beyond Reengineering. Trans. Sys. Man Cyber Part C, 38(1):69–82,
January 2008. ISSN 1094-6977.

[159] A. Waller, M. Clark, and L. Enstone. L-SIM: simulating BPMN diagrams
with a purpose built engine. In F. L. Perrone, B. Lawson, J. Liu, and F. P.
Wieland, editors, Winter Simulation Conference, pages 591–597. WSC, 2006.
ISBN 1-4244-0501-7.

[160] B. Weber, S. Sadiq, and M. Reichert. Beyond Rigidity - Dynamic Process Life-
cycle Support: A Survey on Dynamic Changes in Process-aware Information
Systems. Computer Science - Research and Development, 23(2):47–65, May
2009.

[161] M. Weske. Business Process Management Concepts, Languages, Architectures.
Springer Verlag, 2007. ISBN 978-3-540-73521-2.

[162] C. Wiesner, S. Lhomme, and J. Cannon. Extensible Binary Meta-Language
(EBML). Website, http://ebml.sourceforge.net/, 2012. URL http://ebml.
sourceforge.net/. Last visited 2016-04-28.

[163] M. Wooldridge. An Introduction to Multiagent Systems. Wiley, 2002. ISBN
0-471-49691-X.

[164] M. Wooldridge and N. Jennings. Intelligent Agents: Theory and Practice. The
Knowledge Engineering Review, 10(2):115–152, 1995.

[165] Workflow Standard Process Definition Interface – XML Process Definition
Language. Workflow Management Coalition (WfMC), version 2.2 edition,
August 2012. URL http://www.xpdl.org/standards/xpdl-2.2/XPDL%202.2%
20(2012-08-30).pdf. Last visited 2016-04-27.

[166] W3C. Extensible Markup Language (XML). World Wide Web Con-
sortium (W3C), February 2004. URL http://www.w3.org/TR/2004/
REC-xml-20040204. Last visited 2016-04-26.

[167] WSDL 2.0. Web Services Description Language (WSDL) Version 2.0. World
Wide Web Consortium (W3C), version 2.0 edition, June 2007. URL http:
//www.w3.org/TR/wsdl20-primer/. Last visited 2016-04-27.

[168] K. Wüllenweber, D. Beimborn, T. Weitzel, and W. König. The impact of
process standardization on business process outsourcing success. Information
Systems Frontiers, 10(2):211–224, 2008.

[169] F. Yergeau. UTF-8, a transformation format of ISO 10646. RFC 3629, 11
2003. URL http://www.ietf.org/rfc/rfc3629.txt. Last visited 2016-04-26.

[170] M. Zairi and M. A. Youssef. Quality function deployment: a main pillar for
successful total quality management and product development. International
Journal of Quality & Reliability Management, 12(6):9–23, 1995.

http://ebml.sourceforge.net/
http://ebml.sourceforge.net/
http://www.xpdl.org/standards/xpdl-2.2/XPDL%202.2%20(2012-08-30).pdf
http://www.xpdl.org/standards/xpdl-2.2/XPDL%202.2%20(2012-08-30).pdf
http://www.w3.org/TR/2004/REC-xml-20040204
http://www.w3.org/TR/2004/REC-xml-20040204
http://www.w3.org/TR/wsdl20-primer/
http://www.w3.org/TR/wsdl20-primer/
http://www.ietf.org/rfc/rfc3629.txt

248 Bibliography

Eidesstattliche Versicherung

Hiermit erkläre ich an Eides statt, dass ich die vorliegende Dissertationsschrift
selbst verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel
benutzt habe. I hereby declare, on oath, that I have written the present dissertation
by my own and have not used other than the acknowledged resources and aids.

(Kai Jander)

	Introduction
	Traditional Focus of Business Process Management and Agile Business Process Management
	Research Questions and Goals regarding Long-running Autonomous Processes

	Business Process Management
	Organizational Aspects of Business Process Management
	Functional Organizations
	Process-oriented Organizations

	Types of Business Processes
	Organizational Challenges
	Introducing Business Processes Management in Organizations
	Business Process Management Systems
	Business Processes and Workflows
	Business Process Management and Workflow Management
	Service-oriented Architecture (SOA)

	Business Process Modeling Languages
	Task-based Business Process and Workflow Modeling Languages
	Flowcharts
	Workflow Languages based on Petri-nets
	Yet Another Workflow Language (YAWL)
	Business Process Execution Language (BPEL)
	Event-driven Process Chains (EPC)
	Business Process Model and Notation (BPMN)
	Events
	Activities
	Sequence Flows
	Gateways
	Message Flows
	Pools and Lanes
	Text Annotations
	Associations
	Additional BPMN Elements
	Data Objects
	Messages

	Limitations of Task-based Business Process and Workflow Modeling Languages
	Rule-based Workflow Modeling
	Workflow Instance Agility with Adept2
	Case Management Model and Notation (CMMN)

	Goal-oriented Business Process Modeling and GPMN
	Goal-oriented BPMN (GO-BPMN)
	Goal-oriented Process Modeling Notation (GPMN)
	GPMN Process Context
	Graphical GPMN Elements
	Conditions and Goal Kinds
	Plans and Plan Configuration

	GPMN Meta-Model

	Detailed GPMN Semantics and Model Format
	Goal and Plan Execution in GPMN
	GPMN Intermediate Format
	Modeling with GPMN
	Comparison of GO-BPMN and GPMN
	Goal Instantiation
	Allowing Goal Subtrees as Plan Alternatives
	Goal Deliberation with Suppression Edges
	Continuous Goal Deliberation and Means-End Reasoning
	Additional Goal Kinds

	Implementation of a GPMN-based Editor Toolset

	GPMN Workflow Execution
	Workflow Engines
	Agent Technology
	Definition of Agents
	Agents in Software Development
	Agent Architectures and BDI Agents

	Jadex BDI Agents
	GPMN Model Conversion to BDI Agents
	Implementation Aspects of GPMN Workflow Execution

	Requirements for a Distributed Workflow Management System
	Execution Platform and Service-oriented Middleware
	Workflow Management Systems
	Requirements of a Workflow Management System for Long-running Autonomous Processes
	Workflow Enactment Service
	Jadex Active Components
	Jadex Platform Enhancements
	Compact and Efficient Messaging Format
	Distributed Storage Service

	Distributed Workflow Management System Architecture and Implementation
	Architecture of the Jadex Workflow Management System
	Jadex Workflow Management System Implementation
	Execution Component
	Work Item Management Component
	Authentication Component

	Access Control and Security
	Workflow Monitoring

	Workflow Model Analysis and Validation using Simulation
	Validation Approach and Client-side Model
	Scenarios
	Example Use Case
	Summary of the Simulation-based Testing Approach

	Application Scenario and Conclusion
	Application and Deployment Scenario
	Introduction to Production Preparation
	Goal-oriented Implementation of Production Preparation in GPMN
	Workflow Management System Deployment

	Conclusion and Future Work

